
Acoustical Signal Processing for Classifying and Tracking

Ground Vehicles

Richard J. Kozick† and Brian M. Sadler∗

†Bucknell University, Lewisburg, PA 17837
∗Army Research Laboratory, Adelphi, MD 20783

Sensor networks with embedded processing and
wireless communication nodes play a critical role in
improving situational awareness on the modern bat-
tlefield and for surveillance operations. Aeroacoustic
and seismic sensors are particularly attractive because
they are rapidly-deployable and low-cost, so they may
be used to monitor large areas as well as choke points
where traffic is high [1].

The data collected by a network of aeroacoustic and
seismic sensors may be processed to localize the po-
sitions of ground vehicles, track the vehicles as they
move, and identify the type of vehicle. The localiza-
tion, tracking, and identification algorithms typically
operate in parallel and with minimal sharing of infor-
mation. The performance of the localization, track-
ing, and identification algorithms can be improved
with additional information sharing and signal pro-
cessing. Examples of information sharing include pre-
dicted source locations (from the tracking algorithm
to aid the localization algorithm), differential Doppler
(from the sensor nodes to aid data association in the
tracking algorithm), and source aspect angle, range,
and velocity (from the tracking algorithm to aid iden-
tification based on features from nodes).

Our focus in this summary is on the problem of
identifying (or classifying) the type of vehicle from its
acoustic signature. The objective is to broadly clas-
sify the vehicle into tracked and wheeled categories,
and to further identify the vehicle type within these
categories. Most classification algorithms that have
been developed for this problem use the relative am-
plitudes of harmonic components in the acoustic sig-
nal as features to distinguish between vehicle types
[2]. However, the harmonic amplitudes for a given
source may vary significantly due to several factors.
For example, the target range, land topography, and
meteorological conditions determine the extent of sig-
nal degradations caused by frequency-dependent scat-
tering of the acoustic waves as they propagate through
the air. The harmonic amplitudes also vary due to en-
gine speed (revving) and the orientation of the source

with respect to the sensor (aspect angle).
We can study the limitations on classification ac-

curacy caused by scattering during propagation using
models developed in [3]–[7]. Consider the acoustic sig-
nal measured at one sensor when a vehicle is in close
range. The measured signal is modeled as a sum of
L harmonics with fundamental frequency f0 Hz ob-
served in additive, white, Gaussian noise. The har-
monic amplitudes measured at the sensor include the
effects of propagation (deterministic power loss and
random scattering), source aspect angle, and Doppler.
We consider a simple and commonly used processing
strategy in which the received average signal power is
estimated in L narrow frequency bands centered at the
harmonics f0, 2f0, . . . , Lf0. Let us define the following
for each band, l = 1, . . . , L:

Pl =average power of the signal at the sensor,
including the effects of scattering and noise

Sl =average signal power when there is no noise

2σ2
n =average noise power (same for each band)

Ωl =“saturation” parameter characterizing the
amount of scattering, with 0 ≤ Ωl ≤ 1 and
0 = no scattering (an entirely deterministic
signal), and
1 = complete scattering (an entirely random
signal)

The “signature” of harmonic powers, S1, S2, . . . , SL,
is commonly used for source classification. The
measurable quantities are the received signal powers
P1, P2, . . . , PL, so the classification performance de-
pends on the variation of Pl with respect to the un-
scattered Sl.

It is shown in [3]–[7] that Pl is described by a non-
central chi-squared distribution with two degrees of
freedom. The pdf of P is plotted in Figure 1(a) for
S = 1 and SNR = −10 log10(2σ2

n) = 30 dB. Note that
small deviations of the saturation Ω from 0 cause sig-
nificant variations in the received power P around the



unscattered signal power S = 1, which will limit the
performance of classification algorithms. Figure 1(b)
shows the variation in saturation Ω with frequency and
source range under sunny, calm conditions [6]. These
plots show that harmonic amplitude estimates fluctu-
ate by ± several dB for frequencies above 100 Hz and
ranges greater than about 40 m.

We are evaluating the potential for improved clas-
sification accuracy using additional features, such as
aspect angle, range, and velocity information provided
by the tracking algorithm. Results based on measured
data are presented in [7], which validates fluctuations
in harmonic amplitude by several dB, which is conis-
tent with Figure 1(a). The data analysis in [7] also
shows considerable variation in vehicle harmonic sig-
natures with speed and aspect angle, suggesting that
this information from the tracking algorithm is poten-
tially valuable for the classification algorithm.
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Figure 1: (a) Probability density function (pdf) of av-
erage power P measured at the sensor for a signal with
unscattered average power S = 1, SNR = 1/σ2

n = 30
dB, and various values of the saturation Ω. (b) Varia-
tion of saturation Ω with frequency f and range r.


