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Abstract

Mobile ad hoc networking offers convenient infrastruc-
tureless communication over the shared wireless channel.
However, the nature of ad hoc networks makes them vulner-
able to security attacks. Examples of such attacks include
passive eavesdropping over the wireless channel, denial of
service attacks by malicious nodes and attacks from com-
promised nodes or stolen devices. Unlike their wired coun-
terpart, infrastructureless ad hoc networks do not have a
clear line of defense, and every node must be prepared for
encounters with an adversary. Therefore, a centralized or
hierarchical network security solution does not work well.

This work provides scalable, distributed authentication
services in ad hoc networks. Our design takes a self-
securing approach, in which multiple nodes (say, k) collab-
oratively provide authentication services for other nodes in
the network. We first formalize a localized trust model that
lays the foundation for the design. We further propose re-
fined localized certification services based on our previous
work, and develop a new scalable share update to resist
more powerful adversaries. Finally, we evaluate the solu-
tion through simulation and implementation.

1. Introduction

Mobile ad hoc networking offers convenient infrastruc-
tureless communications over the shared wireless channel.
A group of networking devices communicate among one
another using wireless radios and operate by following a
peer-to-peer network model. The nature of such a network
makes them vulnerable to security attacks. Examples of at-
tacks include passive eavesdropping over the wireless chan-
nel, denial of service attacks by malicious nodes and at-
tacks from compromised entities or stolen devices. Unlike
wired networks where an adversary must gain physical ac-
cess to the wired link or sneak through security holes at
firewalls and routers, wireless attacks may come from any-
where along all directions. The infrastructureless ad hoc

network will not have a clear line of defense, and every node
must be prepared for encounters with an adversary. There-
fore, a centralized or hierarchical network security solution
[1, 2] does not work well in mobile, ad hoc networks.

This work provides scalable, distributed authentication
services in ad hoc networks. Two nodes1 authenticate each
other via signed, unforgeable certificates issued by a “vir-
tual” trusted certification authority. Compared with com-
mon network authentication solutions [1, 2] that rely on
physically present, trusted third-party (certification author-
ity) server(s), our design takes a self-securing approach, in
which multiple nodes (say, k) collaboratively serve as a
certification authority server. Therefore, the authority and
functionality of the authentication server are distributed to
each node’s locality. Any local k nodes are trusted as a
whole and collaboratively provide authentication services.

Some nice features of our design are as follows. The
system does not expose to any single point of compro-
mise, single point of denial of service attack, or single point
of failure. Authentication can be performed in every net-
work neighborhood; this feature is important to authenticate
roaming users in a mobile ad hoc network. Furthermore, our
solution scales to large network size, and is robust against
wireless channel errors.

This paper follows the design guidelines of [6] and
makes several new contributions. We first formalize a lo-
calized trust model that lays the foundation for the design
in Section 3, and then expand the adversary model that the
system should handle. We further propose refined localized
certification services (Section 5), and develop a new scal-
able solution of share updates to resist more powerful ad-
versaries (Section 6). The new solution is evaluated through
simulation and implementation (Section 7). We comment
on several important design issues in Section 8 and con-
clude this paper in Section 9.

1For simplicity, we only handle node authentication in this work. The
same design applies equally well in user authentication.
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2. Related Works

Popular network authentication architectures include
Kerberos [5] and the X.509 standard [1]. Two entities au-
thenticate each other via a globally trusted certificate au-
thority (CA). While this model gains great popularity in
wired networks, it does not work well in large ad hoc wire-
less environments for several reasons: (a) Ad hoc networks
provide no infrastructure support. The cost of maintaining
such centralized servers may be prohibitively high. (b) Each
of the CA servers is exposed to a single point of compro-
mises and failures. (c) Multihop communications over the
error-prone wireless channel expose data transmissions to
high loss rate and large latency. Frequent route changes in-
duced by mobility also make locating and contacting CA
servers in a timely fashion non-trivial. Variations of the
above model, such as hierarchical CAs and CA delegations
[2] can ameliorate, but cannot addresses issues such as ser-
vice availability and robustness [6].

PGP [3, 7] follows a “web-of-trust” authentication
model. However, this approach does not scale beyond a
relatively small community of trusted individuals. It would
be difficult for each node to maintain a long list of trusted
friends. Moreover, the members of a network may not even
reach consensus on who is trusted and who is not, since in-
dependent “communities of trust webs” [3] may be formed
as a by-product of this approach.

Security function sharing has been an active research
area in the literature [8, 9, 10, 11, 12], where threshold
secret sharing [13] serves as a basic primitive. Resilience
against compromised nodes is enhanced by distributing the
functionality of the centralized CA server among a fixed
group of servers. Proactive secret sharing [14] can further
improve robustness via periodic updates. However, the fo-
cus of these proposals is to maximize the security of the
shared secret. They typically assume a small group of a
few servers with rich network connectivity. Our scheme is
inspired by these proposals, but extends the idea further to
minimize the effort and complexity for mobile nodes to lo-
cate and contact the service providers in a dynamic multi-
hop wireless network. There is no differentiation between
servers and clients in our system: certification services are
distributed into every node and a threshold number of nodes
can collaboratively act as a server to provide certification
services for other nodes.

There are several recent works on security in wireless
networks. [15] proposes a Kerberos-based authentication
scheme for mobile users in wireless cellular networks. [16]
directly applies the threshold secret sharing and proactive
secret share update techniques in a fixed group of “special
nodes”. Instead of following the conventional client-server
model, we take a peer-to-peer approach to maximize service
availability and facilitate localized communication.

3. System & Adversary Models

This work considers an ad hoc wireless network, where
mobile nodes communicate with one another via the
bandwidth-constrained, error-prone, and insecure wireless
channel. We assume nmobile nodes, and nmay be dynami-
cally changing as mobile nodes join, leave, or fail over time.
Besides, n is not constrained since there may be a large de-
vice population. The network provides neither physical nor
logical infrastructure support, and the reliability of multi-
hop packet forwarding based on underlying transport layer
and ad hoc routing is not assured. We also make the fol-
lowing assumptions. (1) Each node has a unique nonzero
ID and a mechanism to discover its one-hop neighbors. (2)
Communication between one-hop neighboring node is more
reliable compared with multihop communication over the
error-prone wireless channel. (3) Each node has at least
k one-hop legitimate neighboring nodes2. (4) Mobility is
characterized by a maximum node moving speed Smax. (5)
Each node is equipped with some local detection mech-
anism to identify misbehaving nodes among its one-hop
neighborhood, e.g., those proposed in [4, 18]. This assump-
tion is based on the observation that although intrusion de-
tection in ad hoc networks is generally more difficult than in
wired networks [4], detecting misbehaviors among one-hop
neighbors is easier and practical due to the broadcast nature
of the wireless transmission [18].

Our design handles two kinds of attacks: the DoS attacks
and node break-ins. Adversaries may issue DoS attacks
from various layers of the network stack ranging from net-
work layer Smurf and Teardrop, transport layer TCP flood-
ing and SYN flooding, and various attacks in application
layer. For adversaries that seek to compromise networking
nodes, we assume that the underlying cryptographic prim-
itives such as RSA are computationally secure. However,
we do allow occasional break-ins through factors such as
insecure OS, software bugs and backdoors etc. Several ad-
versaries may conspire to form a group. For ease of pre-
sentation, we denote such an adversary group by a single
adversary. We characterize the adversaries in the following
two models as proposed in [14]:

� Model I: During the entire lifetime of the network,
the adversary cannot break into or control k or more
nodes.

� Model II: Consider time being divided into intervals of
length T . During any time interval T , the adversary
cannot break into or control k or more nodes.

Although at any time constant it cannot break into or con-
trol k or more nodes, the adversary of model II can choose

2If a node could not find k neighbors, it may wait for new nodes coming
in or roam to a new location for more neighbors.
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its victims at each time interval. As time goes on each node
in the network can be broken during some time interval.
[6] handles the adversary of model I. In this paper, we ex-
tend with scalable parallel share update techniques to han-
dle model II adversaries (Section 6).

4. The Architecture

This section presents our overall architecture. We first
formalize a localized trust model, and then briefly introduce
the certification design based on the de facto standard RSA.

4.1. Localized Trust Model

A well-defined trust model is fundamental in authenti-
cation protocols. In the dominant trusted third party (TTP)
trust model [2], an entity is trusted only if it is verified by a
central authority. While implementations of the TTP model
possess efficiency and manageability properties in central-
ized systems, they suffer from scalability and robustness
problems. In PGP’s “web-of-trust” model [7], each en-
tity manages its own trust based on direct recommendation.
[17] seeks to further quantify the notions of trust and rec-
ommendation. To address the unique networking issues in
in an ad hoc wireless network, we provide a localized trust
model as follows.

In our localized trust model, an entity is trusted if any k
trusted entities claim so within a certain time period Tcert.
These k entities are typically among the entity’s one-hop
neighbors. Once a node is trusted by its local community,
it is globally accepted as a trusted node. Otherwise, a lo-
cally distrusted entity is regarded as untrustworthy in the
entire network. k and Tcert are two important parameters
with Tcert characterizing the time-varying feature of a trust
relationship [17].

Two options for setting k are as follows. The first is to
set k as a globally fixed parameter that is honored by each
entity in the system. In this case, k acts as a system-wide
trust threshold. The second option is to set k as a location-
dependent variable. For instance, k may be the majority
of each node’s neighboring nodes. This second option pro-
vides more flexibility to work in concert with diverse local
network topology. However, there is no clear system-wide
trust criterion. Due to lack of effective mechanisms to au-
thoritatively determine a node’s neighborhood in a mobile
environment, the adversaries may take the advantage of this
feature. In our design, we choose the first option with a
network-wide fixed k that is tuned according to the network
density and system robustness requirements. If a node could
not find k neighbors in certain location, it may roam to meet
more modes or wait for new nodes to move in. We will show
how mobility helps a node to “accumulate” enough number
of nodes in Section 5 and 7.2.1.

Trust management and maintenance are distributed in
both space (k) and time (Tcert) domains in our localized
trust model. This property is particularly appropriate for a
large dynamic ad hoc wireless network, where centralized
trust management would be difficult or expensive. Besides,
a node indeed cares most the trustworthiness of its immedi-
ate neighbors in practice. This is because a node will com-
municate with the rest of the world via its one-hop neigh-
bors.

4.2. Primitives

In an RSA-based design, the system CA’s RSA key pair
is denoted as fSK;PKg, where SK is the system pri-
vate/secret key and PK is the system public key. SK is
used to sign certificates for all nodes in the network. A cer-
tificate signed by SK can be verified by the well-known
public key PK. By threshold secret sharing, SK is shared
among network nodes. Each node vi holds a secret share
Pvi , and any k of such secret share holders can collectively
function as the role of CA. However, SK is not visible,
known or recoverable by any network node. We seek to
preserve the secrecy of SK all the time.

Besides the system key pair, each node vi also holds a
personal RSA key pair f �ski; �pkig. To certify its personal
keys, each node vi holds the certificate certi in the for-
mat of < vi; �pki; T >, which reads as: “It is certified that
the personal public key of vi is �pki during the time interval
[t; t+T ]. A certificate is valid only if it is signed by system
secret key SK.

Our design makes extensive use of the polynomial se-
cret sharing due to Shamir [13]. A secret, specifically the
certificate-signing key SK, is shared among all n nodes
in the network according to a random polynomial of or-
der k � 1. A coalition of k nodes with k polynomial
shares can potentially recover SK by Lagrange interpola-
tion, while no coalition up to k � 1 nodes yields any in-
formation about SK. To further defend the polynomial se-
cret sharing against the model II adversaries, Herzberg et
al. proposed periodical secret share updates with different
polynomials [14]. We extend this technique with scalable
algorithms to further improve the the robustness of our sys-
tem against adversaries of model II.

4.3. Overview

In our architecture, each node carries a certificate signed
with SK. PK is assumed to be well-known for certifi-
cate verification. Nodes without valid certificates are denied
from access to any network resources such as routing and
packet forwarding. When a mobile node moves to a new
location, it exchanges certificates with its new neighbors.
Authenticated neighboring nodes help each other forward
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and route packets. They also monitor each other to detect
possible break-ins. Specific monitoring mechanisms are left
to each individual node’s choice.

Certificates are stamped with expiration time. Nodes
have to be issued a new certificate upon the expiration of
its old certificate. In the centralized authentication archi-
tecture, nodes have to contact a CA server for this service.
In our architecture, we distribute the certificate-signing key
SK into each node of the network. Node vi requests new
certificate from any coalition of k nodes, typically among
its one-hop neighbors. Upon the receipt of vi’s certification
request, a node checks its records. If its record shows vi as
a well-behaving legitimate node, it returns a “partial” cer-
tificate by applying its share of SK. Otherwise the request
is dropped. By collecting k partial certificates, vi combines
them together to generate the full new certificate as if it were
from a CA server. A misbehaving or broken node that is
detected by its neighbors will be unable to renew its certifi-
cate. It will be cut off from the network at the expiration
of its current certificate. With the distributed CRL mecha-
nisms proposed in this paper, a still-valid certificate can be
revoked.

A valid certificate in our system represents the trust from
a coalition of k nodes. Nodes with valid certificates are
globally trusted. Each node contributes to the overall trust
management and maintenance by monitoring and certifying
its neighboring nodes. By this means, we realize the local-
ized trust model as proposed in Section 4.1. By distributing
certification services into each node’s one-hop locality, we
realize ubiquitous service availability for mobile nodes and
robustness against DoS attacks.

5. Localized Certification Services

In this section, we present our localized certification ser-
vices that include certificate issuing/renewal with dynamic
coalescing, certificate revocation and distributed CRLs.
The work in [6] proposed a k-bounded coalition offsetting
technique to enable scalable distributed certificate genera-
tion. Node vi firstly locates a coalition B of k neighbors
fv1; � � � ; vkg and broadcasts certification requests to them.
A node vj 2 B checks its monitoring data on vi to decide if
certification service is granted. Upon receiving k partial cer-
tificates from coalition B, node vi multiplies them together
to recover its full certificate.

There are two drawbacks in the above approach. Firstly,
if any node in coalition B fails to respond due to node fail-
ures or moving out of range, all the other partial certificates
become useless. The computation of other nodes are all
wasted and vi has to restart the whole process from the very
beginning. We present an optimization called dynamic coa-
lescing to solve the problem in Section 5.1. Our optimiza-
tion is based on the observation that the coalition can be
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Figure 1. Dynamic Coalescing

formulated dynamically from any k responding nodes, in-
stead of being specified by vi a priori.

The second drawback is that when node vj receives a
certification request from vi, its records may not provide
enough information on vi. It may be because the interac-
tion between vi and vj does not last long enough. More-
over, vi may not exist in vj’s records at all if they just met.
vj has two options in this scenario. One is to serve vi’s re-
quest, since no bad records are located. The risk is that a
roaming adversary who cannot get a new certificate from
his previous location may take the advantage. The other op-
tion is to drop the request, since no records can demonstrate
vi well-behaving. But a legitimate mobile node may not be
able to get a new certificate. [6] took the second policy to
handle roaming adversaries. The cost is the limitation on
node mobility: a mobile node has to prepare a certificate
with enough long validity time before he moves. In this
paper we take the first approach to enable free node mobil-
ity. Roaming adversaries are handled with the distributed
certificate revocation mechanisms presented in Section 5.2.

5.1. Certificate Issuing/Renewal with Dynamic Co-
alescing

Each node v in the network holds a polynomial share
Pv of the certificate signing exponent SK according to a
random polynomial f(x) s.t. Pv = f(v). f(x) = SK +Pk�1

j=1 fjx
j , where f1; � � � ; fk�1 are uniformly distributed

over a finite filed. Node vi broadcasts its request for a new
certificate, without specifying the coalition. A neighboring
node vj that receives the request and decides to serve the
request will return a partial certificate CERTvj by directly
applying its polynomial shares on the certificate statement
cert as CERTvj = (cert)Pvj mod N . Upon receiving at
least k such partial certificates, node vi picks k to form the
coalition B. Without loss of generality, suppose vi chooses
fCERTv1 ; � � � ; CERTvkg. Node vi then converts each of
them according to the IDs of these k responding nodes:

CERT 0
vj

=
�
CERTvj

�lvj (0) mod N
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where lvj (0) =
Qk

r=1;r 6=j
vr

vr�vj
mod N . vi then multi-

plies them together to generate the candidate certificate as
CERT 0 =

Qk
r=1CERT

0
vj

mod N . Finally node vi em-
ploys the k-bounded coalition offsetting algorithm [6] to
recover its new certificate CERT from CERT 0.

The computation complexity for each serving nodes is
O(1). For the requesting node the computation complexity
is still O(k), but the actual load is doubled compared with
[6]. Because it consists of a single round of localized com-
munication: one broadcast request and k unicast responses
(Figure 1), our protocol has minimum requirements on the
reliability of the underlying wireless channel. As long as k
neighbors respond, other neighbors are free to move or fail;
additional responses may be discarded.

5.2. Certificate Revocation and CRL

The records that vj maintains consist of two parts: its di-
rect monitoring data on neighboring nodes, and a certificate
revocation list (CRL). Each entry of the CRL is composed
of a node ID and a list of the node’s accusers. If a node’s ac-
cuser list contains less than k legitimate accusers, the node
is marked as “suspect”. Otherwise, the node is determined
by vj to be misbehaving or broken and marked as “con-
victed”. We choose the threshold that convicts a node as k
to ensure a legitimate node not be convicted by malicious
accusations from an adversary.

In two scenarios a node is marked “convicted”. When
by direct monitoring vj determines one of its neighboring
nodes to be misbehaving or broken, vj puts the node into its
CRL and directly marks the node “convicted”. In this sce-
nario vj also floods a signed accusation against the node.
The range of the flooding is studied below. The other sce-
nario happens when vj receives an accusation against some
node. It firstly checks if the accuser is a convicted node in
its CRL. If it is, the accusation is concluded to be malicious
and dropped. If not, vj updates its CRL entry of the accused
node by adding the accuser into the node’s accuser list. The
accused node will be marked “convicted” if the number of
accusers reaches k. When a node is convicted, vj delete
the node from all accuser lists. A convicted node will be
marked “suspect” if its number of accusers drops below k.

The range of the accusation propagation is an important
design parameter. A large range causes excessive communi-
cation overhead, while a small range may not be enough to
cover a roaming adversary. The practical scheme for con-
trolled flooding is by setting the TTL (time-to-live) field
in the IP headers of the accusation packets. One way to
set TTL is based on the certificate validity period Tcert,
the one-hop wireless transmission distance D, and our as-
sumption on maximum node moving speed Smax. In a uni-
formly distributed network, to ensure a misbehaving node
or a compromised node cannot escape the area of accusa-

tion before the expiration of its current certificate, the TTL
should be set as TTL �

�
Tcert�2Smax

D

�
. If TTL is set to

m, the nodes whose accusations reach vj must be at most
m hops away. Therefore vj ’s CRL contains nodes at most
m+1 hops away. To further decrease the CRL complexity,
Tcert after an entry’s last update, vj can remove it from its
CRL. The reason is that after Tcert a convicted node should
have its certificate expired, and thus be cut off from the net-
work. vj holds each CRL entry for Tcert so that it will not
serve a convicted node that carries still-valid certificate.

In our design, CRL is constrained in both space domain
and time domain. It is built and maintained on-demand,
and stored locally. These properties comply with the overall
scalability and robustness of our architecture, and the ad hoc
nature of the network.

6. Parallel Share Updates

Our localized certification so far is robust against the
adversaries of model I as defined in Section 3. To handle
stronger model II adversaries, Herzberg et al. proposed pe-
riodical updates of each node’s secret share [14]. However,
the proposed protocol in the proactive secret sharing con-
text requires each node collect inputs from all other nodes
to finalize its update. It is therefore not applicable in our
scenario for several reasons: (a) The solution is not scal-
able. In an ad hoc wireless network, a node cannot afford to
maintain updated global knowledge of the dynamic network
membership; (b) The communication overhead is too high
for wireless channel; (c) These proposals require a global
broadcast channel, which does not exist in typical ad hoc
wireless networks.

In this section, we propose two approaches to achieve
scalable and efficient share update in ad hoc wireless net-
works. The first approach is a simple sequential process
based on the self-initialization as presented in [6]. Firstly a
coalition of k nodes update their shares by applying the ex-
isting protocols as proposed in [14]. The self-initialization
protocols then follow to update the shares of the rest of the
network. The second approach features parallel share up-
dates over the network for fast convergence. We present the
parallel share update mechanism as follows.

Similar to [14], we divide time into periods. Each
time period is composed of a share update phase and an
operational phase. At the beginning of the share update
phases, a chosen coalition of k nodes in the system col-
laboratively generate a random share update polynomial
fu(x) = fu;1x + � � � + fu;k�1x

k�1 where fu(0) = 0. fu
is then encrypted by PK for privacy against adversaries.
The coalition then collaboratively apply their polynomial
shares of SK to sign the encrypted fu. This signature pre-
vents an adversary of model II from emulating a coalition
of k nodes to fake share updates. The encrypted polyno-
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mial, together with its signature, is then propagated in the
network by flooding. Once a node receives the encrypted
update polynomial, it requests share-update service from k
neighboring nodes to evaluate its Pu;vi = fu(vi). Note that
as long as they apply the same version of shares, these k
nodes can serve the request without having their share up-
dated. The process is composed of the following three steps.

Collaborative generation of the update polynomial fu.
At the beginning of each update phase, each node initiates
updates with probability 1=n̂ ;where n̂ is an estimate on the
total number of networking nodes. This ensures that statis-
tically there is only one node to initiate the update process.
Once a node vi decides to initiate the update, it locates a
coalition of k neighbors and collaboratively generate the en-
crypted update polynomial (fu)PK and a signature.

Robust propagation of the update polynomial. Node vi
floods the encrypted update polynomial (fu)PK with the
signature in the network. We take the advantage of the ro-
bustness of the flooding protocol in connectivity-redundant
ad hoc networks, to ensure that each node receives the up-
date polynomial at least once.

Distributed evaluation of share update Pu;vi . Since the
propagated fu is encrypted by the system PK, each node vi
solicits its k neighbors to collaboratively evaluate Pu;vi =
fu(vi) for it. Similar to the localized certification services,
each of these k neighboring nodes returns a partial share
update. Node vi adds these k partial updates together to
recover Pu;vi . Node vi then updates its share and erases its
old share at the end of the update phase.

Our design is (k; n)-secure [19] in the sense that given
up to k� 1 shares of SK and a history of polynomial many
partial results, an adversary learns no more about SK than
without these information. Due to lack of space, we leave
the detailed algorithms, communication protocols and proof
to the technical report [20].

7. Performance Evaluation

We implemented our design in both network simulator
ns-2 and UNIX platform. The Unix implementation is used
to evaluate the computational cost, and the network simu-
lator helps us to evaluate the communication aspects of our
protocols, such as scalability, service availability, mobility
and channel error in ad hoc wireless networks.

7.1. Evaluation on Computation Aspects

We test our system on machines with three different
SPECint rate95 values: 10, 107 and 202 [23], which rep-
resent the processing power of a Pentium 75, PentiumII
300, and PentiumIII 500 respectively. Our measurements
show that computation power is a critical factor of the per-
formance. For example, a mobile laptop computer with a

PentiumIII 500Mhz CPU performs well in all test cases,
while a low-end computer with a Pentium 75 CPU requires
about 5 sec for certification service with key length 1024
bits and coalition size k�10. The parallel share update
needs more time to complete: almost 80 sec for the low-
end device. However, since in practice share updates are
not very frequent (once several hours/days), we can tolerate
that amount of delay.

From figure 23, we observe that the standard RSA sign-
ing is almost 2.5 times faster than the partial certificate com-
putation (PCC). This is because standard RSA signing uses
a major optimization technique [22], which is not applicable
without the knowledge of the two prime factors of the RSA
modulo. From the same figure, we also observe that a short
personal key (e.g. 768 bits for low-end devices) can reduce
the processing delay to 1.3 sec. Figure 3 shows how the
RSA key length affects the processing delay of the parallel
share update. If we choose the key length to be 1024 bits, a
Pocket PC needs 24 sec to finish a parallel share update.

Figures 4 and 5 show how k affects processing delay. In
figure 4 we can see that k has a small impact on the pro-
cessing delay of certification services. This is because the
multiplication of k partial certificates is an inexpensive op-
eration even when k is relatively large. However, k greatly
affects the computation of share updates. From figure 5,
we observe that the processing delay grows linearly with k.
This is because each node in the k coalition has to process
k � 1 PK-encrypted polynomial coefficients.

7.2. Evaluation on Communication Aspects

We use four metrics to evaluate the performance of our
communication protocols. Success Ratio measures the ra-
tio of the number of successful certification services over
the number of requests. Average Delay measures the av-
erage latency for a node to request a certification service.
Overhead measures the communication overhead in bytes.
Convergence time measures the time required to complete
a share update. We run simulation in networks with 30 to
100 nodes. Node moving speed varies from 1 m/sec to 20
m/sec. We apply the random way-point model to emulate
node mobility patterns. The certificate expiration is set to 5
time units. Parameter k is set to 5 by default, except for the
topologies that consist of 30 nodes where k is set to 3.

7.2.1 Certification services

Figure 6 shows the success ratio of the certification services
as the network size grows from 30 to 100 nodes. From the

3In the performance diagrams, Speed indicates SPECint rate95 hard-
ware value. RSA stands for a standard RSA SK-signing operation. PCC
denotes the partial certificate computation. Combine stands for multiplica-
tive combination plus k-bounded coalition offsetting. PSSU denotes a sin-
gle node’s processing delay for share update.
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Figure 3. Share Update:
RSA Key Length
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Figure 4. Cert. Service: k
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Figure 5. Share Update: k
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Figure 6. Cert. Service:
Success Ratio vs. Node #
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Figure 7. Cert. Service:
Bytes vs. Node #
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Figure 8. Success Ratio
vs. Node #, Error Rate 10 %
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Figure 9. Avg. Delay vs.
Node #, Error Rate 10 %

figure, we observe that the success ratio is always over 95%
and in most cases 100%. As the node speed increases from
1 m/sec to 20 m/sec, we observe that the success ratio al-
most remains unchanged. For the case of 1 m/sec, the suc-
cess ratio is around 95%. The main reason is that under low
node density and low mobility a node may have difficulty in
locating k neighboring nodes. Figure 7 shows that the total
communication overhead grows linearly as the number of
nodes increases, i.e., the per node overhead remains fixed.
Moreover, the communication overhead is almost indepen-
dent of the node moving speed.

The impact of wireless channel errors on our protocols
is shown in figures 8 and 9. Node mobility is set to 5 m/sec
and the channel error is set to 10%. From these figures, we
see that our localized design is robust against the channel
error. However, the performance of both the single CA and
4-CA centralized approaches degrades significantly.

7.2.2 Parallel share update

Although the secret share update protocol may not be ex-
ecuted as often as that of certificate renewal, its ability to
scale to the network size and resilience against the node mo-
bility are critical to ensure the secret share consistency. Fig-
ure 10 shows the average delay experienced by each node
while updating its secret share. We observe that the delay
remains almost constant as the number of nodes in the net-
work increases, and mobility has little impact on it even at
the high speed of 15m/sec. Figure 11 shows the time re-
quired for the share update process to converge. From the
figure we can see that the convergence time is almost in-

dependent of the network size and node moving speed as
expected. These results demonstrate the scalability to the
network size and the resilience against node mobility of our
design.

Figures 12-13 expose more details of the share update
process. In these figures the y-axis represents the percent-
age of nodes that manage to update their shares within the
time on the x-axis. They show the cumulative distribution
of the update process. We use the network of 60 and 100
nodes, and the node moving speed from 3 to 15 m/sec.
From these figures we can see that as the size of the net-
work grows, the impact of mobility decreases. This is a
great improvement compared with the solution that we pro-
posed in our previous work [6], where the convergence time
increases linearly as the network scale grows.

8. Discussions

We now come back to discuss several important issues.

Obtaining initial certificates Any new node needs an ini-
tial certificate before it can join the network. Moreover,
an admitted node has to bear a valid certificate when it re-
quests its certificate to be renewed. Our localized certifi-
cation never creates or issues a brand-new certificate. This
policy is to prevent malicious node to have multiple certifi-
cates based by forged or stolen IDs.

How to issue initial certificates poses the root of trust
problem. A node may be issued an initial certificate by
an offline authority through external means (e.g., in-person
ID). Alternatively, we may use any coalition of k network-
ing nodes to issue an initial certificate via collaborative ad-
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Figure 10. Parallel Share
Upd.: Avg. Delay vs. Node #
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Upd.: Convergence Time vs.
Node #

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

# 
of

 N
od

es
 (

%
)

Proactive Secret Share Update − Node percentage vs. Delay, 60 Nodes

Mobility 3m/sec 
Mobility 10m/sec
Mobility 15m/sec

Figure 12. Parallel Share
Upd.: Node percentage vs.
Delay, 60 Nodes

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

# 
of

 N
od

es
 (

%
)

Proactive Secret Share Update − Node percentage vs. Delay, 100 Nodes

Mobility 3m/sec 
Mobility 10m/sec
Mobility 15m/sec

Figure 13. Parallel Share
Upd.: Node percentage vs.
Delay, 100 Nodes

mission control for this new node. The admission control
policy has to be consistent with the robustness of the over-
all trust model, system model and the adversary models.

Bootstrapping of the first k nodes To initialize the very
first k nodes, we assume an offline authority who knows the
full certificate signing key SK and the associated polyno-
mial f(x) of degree k � 1. Note that this is the standard
assumption of related works on secret sharing [14, 9, 21].

Parameter k Revisited Our design so far assumes each
node to have at least k legitimate neighbors. This assump-
tion is critical for certification services to be robust against
the adversaries defined in Section 3. The parameter k also
determines the availability of our services. In our current
design, these three factors are coupled and represented by a
single parameter k. This coupling effect reduces the flexi-
bility of our system. How to decouple these three aspects
poses new challenges for future research.

Intrusion Detection in Ad Hoc Networks As presented
in our system model (Section 3), we assume each node is
equipped with some local detection mechanism to iden-
tify misbehaving nodes among its one-hop neighborhood.
While we admit that this might seem a strong assumption,
some initial progress has been reported recently [18]. We
believe that as time goes, better local intrusion detection
mechanism will be available to serve our purpose.

9. Conclusions

This paper describes a self-securing approach to node
authentication in mobile, ad hoc wireless networks. To this
end, we propose a localized trust model, together with its
realization to address networking issues of node mobility,
network dynamics and wireless channel errors. A scalable
share update scheme is developed, and several optimization
techniques that greatly enhance the efficiency and robust-
ness of our algorithms and protocols are proposed. Through
localized design, we ensure the scalability of our architec-
ture to facilitate practical deployment in a potentially large-
scale network with dynamic node membership.
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