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Abstract

Large sensor networks are being widely deployed
for measurement, detection, and monitoring applications.
Many of these applications involve database systems to
store and process data from the physical world. This data
has inherent measurement uncertainties that are properly
represented by continuous probability distribution functions
(pdf’s). We introduce a new object-relational data type, the
Gaussian ADT GADT, that models physical data as gaus-
sian pdf’s, and we show that existing index structures can
be used as fast access methods for GADT data. We also
present a measure-theoretic model of probabilistic data and
evaluate GADT in its light.

1 Introduction

Networks of radar, sonar, seismic, and thermal sensors
are being deployed widely for measurement, detection, and
monitoring applications. These sensor networks will cre-
ate a flood of observational data of unprecedented scale
[EGHK99]. Similarly, enormous quantities of physical data
are, and will continue to be, generated by astronomical sky
surveys [SKT � 00]. A large class of these applications rely
on database systems to store, filter, compare and aggregate
large volumes of physical data [BS00].

Inherent to data that result from a physical measure-
ment is uncertainty regarding the true value of the measured
quantity. This uncertainty can properly be described by
a continuous probability distribution function ( ��� �	� 
�� ) over
the possible measurement values. For example, consider a
temperature sensor in your office that reports an estimate �
of the current temperature


; let this estimate be ���������
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Fahrenheit (F). Given this measurement, do we believe that
the temperature in your office is exactly

�����
F? Assuming

that the error introduced by the sensor has a gaussian dis-
tribution with a known standard deviation of � � F, we can
compute the probability that the true temperature


lies in

the range � �����	 "! . In the context of a database application, a
user should be able to submit a query that retrieves all tem-
peratures whose true values lie in the range � $#���&%�! with a
given probability ' .

Note that we need to manage such uncertainties using
probability theory, and not using fuzzy theory. There is no
question here about fuzzy set membership or the definition
of vague terms such as “tall” or “hot.” Since the nature of
our problem is fundamentally probabilistic, fuzzy relational
models do not apply in our setting. [AR84, KF88, RM88].

In order to manage the uncertainty associated with phys-
ical data but at the same time take advantage of features of
a modern database system, we need a data model for repre-
senting continuous ��� �	� 
�� ’s such as gaussians. Surprisingly,
none of the numerous probabilistic data models described in
the literature handles continuous ��� �	� 
�� ’s—all models deal
with discrete ��� �	� 
�� ’s [CP87, BGMP92, DS96].

In this paper, we develop a data model for continuous��� �	� 
�� ’s. Our first contribution is GADT, a concrete abstract
datatype (ADT) for representing one-dimensional gaussian
distributions. GADT is simple and expressive. We show that
GADT is easy to implement as an extension to an existing
object-relational DBMS, and we outline how we can access
GADT data efficiently using indexing by linear constraint
(QBLC) [GRSY97]. As a proof of concept, we have car-
ried out a prototype implementation of GADT in the Cornell
Predator ORDBMS [Ses98].

Our second contribution is a study of the theoretical as-
pects of probability space ADT’s. Having started with the
datatype GADT, we lift our level of abstraction to a measure-
theoretic framework to reason about properties of datatypes
that represent continuous as well as discrete probability dis-
tribution functions. We introduce probability spaces and
events as the basic elements of any probabilistic data type.
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We show that equality raises an interesting challenge for
continuous distributions, and we introduce operations that
overcome this challenge. This conceptual study does not
only provide a framework for the future development of
probabilistic ADT’s, but also sheds light on several aspects
of our one-dimensional gaussian model. Thus our measure-
theoretic framework is not only an abstraction of given in-
stantiations of probabilistic ADTs, it allows us to gain in-
sights into the general functionality and methods that in-
stantiations of probabilistic ADTs should encompass and
what their semantics should be. The reader should therefore
understand this paper as a trail that starts with a concrete in-
stantiation, climbs to the abstract level, and then returns to
the concrete instantiation with some insights from the ab-
stract level.

The milestones along our trail are as follows. Section 2
introduces the gaussian ADT GADT and its methods. Sec-
tion 3 outlines techniques for query processing using GADT

data and queries. Section 4 studies the theoretical aspects
of probability space ADTs, and Section 5 discusses the in-
sights that our theoretical framework provides with respect
to GADT. We discuss related work in Section 6 and con-
clude in Section 7.

2 GADT: The Gaussian ADT

In this section, we introduce GADT, the gaussian ADT
with which we can represent physical measurements as
continuous gaussian ��� �	� 
�� ’s. We first introduce gaussian��� �	� 
�� ’s formally in Section 2.1. Section 2.2 introduces
GADT, and Section 2.3 introduces the methods that GADT

supports.

2.1 Preliminaries

A gaussian ��� �	� 
�� has the form

����� ���	��
��� �������� ��� ���	���  ���� %�� � (1)

The parameters � and � are the mean and standard devia-
tion of the ��� �	� 
�� , respectively. The definite integral of ����� �
is denoted  ��� � and gives the probability that the true value
of � lies in the interval of integration:

 ��� �!� � " �$# ! 
%�� ��'&)( �+* � " �$# !-,&�/.102 ����� �!�	34
�5�3 � (2)

For 687:9 , we use ; � 6 
 to denote  =< � � � � >?6 � 6 ! 
 . It is related
to the well-known error function @BA	C � 6 
 [Fel66, Vol. 1, Ch.
7]:

; � 6 
D�� ��  E< � � � � >?6 � 6 ! 
 � @BA	CEF 6� %!G � 687:9 � (3)

The function ; has an inverse, H , defined on � 9 ��# ! by:

H � ; � 6 
4
I�� �� 6 � (4)

Both ; and H are monotonically increasing.

2.2 The GADT Model

A measurement that is subject to many small and ran-
dom errors is normally distributed and characterized by a
gaussian ��� �	� 
�� A finite number of repetitions of a measure-
ment also results in a normal distribution [Tay82]. We de-
sire a data model that treats gaussians as first-class data val-
ues. GADT accomplishes this by defining a gaussian ADT:
an instance of the ADT corresponds to a gaussian ��� �	� 
�� ,
and, in terms of physical data representation, consists sim-
ply of the two real numbers � and � . GADT instances
are by definition probabilistically independent of each other
so that the joint ��� �	� 
�� of two gaussian instances is sim-
ply the product of their ��� �	� 
�� ’s. Statistical dependence be-
tween measured quantities can be represented using higher-
dimensional gaussians; higher-dimensional gaussians are a
topic for future research.

In order to evaluate the probability that a true physical
value lies in a given interval, we need an interval ADT. The
interval ADT represents intervals on the real line; it is an-
cillary to GADT. Due to space constraints, and for ease of
explanation, we do not define the interval ADT formally,
and we focus our attention on the case of single intervals, as
opposed to unions of disconnected intervals.

We now use a simple denotational semantics to define
GADT methods. The semantics make use of the following
basic value mappings, which are generalized in Section 4.
Given a GADT instance J having mean � and standard devi-
ation � , we define the gaussian mapping K � � J ! ! by

K � � J ! ! �� ��  ��� � � (5)

Similarly, given an instance L of the interval ADT represent-
ing the real interval � " �$# ! , we define the interval mappingM � � L ! ! by M � � L ! ! �� �� � " �$# ! � (6)

Finally, given a real instance � representing the real numberN
, we define the real mapping O � � � ! ! by

O � � � ! ! �� ��'N � (7)

We use these three instance mappings to define the GADT

methods PBA�Q�R , SUT V , and WXQ�YZC , and we show how these
methods can be used to pose queries involving data with
continuous ��� �	� 
�� ’s.
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2.3 GADT Methods

2.3.1 Selections with PBA�Q�R
Computing the probability that a value lies inside an interval
is the most fundamental GADT operation. The PBA�Q�R ADT
method provides this feature: It takes as argument an inter-
val instance L and returns the probability that the true value
of the measurement represented by a GADT instance J lies
in
M � � L ! ! : O � � J � PBA�Q�R � L 
 ! ! �� �� K � � J ! ! � M � � L ! ! 
 � (8)PBA�Q�R is useful for obtaining the likelihood of events. As

an example, let � � be a relation having the GADT-valued
attribute ������� , which stores a temperature measurement
obtained from a temperature sensor. Using PBA�Q�R , we can
pose queries such as: Retrieve from � � all tuples whose������� is within 0.5 degrees of 68 degrees with at least 60%
probability:

SELECT *
FROM � �
WHERE � � ��������� � PBA�Q�R � � �
	 � � � ��� � � ! 
 7 9 � �

Another example is as follows: Retrieve from � � all tuples
whose ������� is at least 75 degrees with probability at most
90%:

SELECT *
FROM � �
WHERE � � ��������� � PBA�Q�R � � 	 � �� ! 
�� 9 � �

2.3.2 Comparisons with SUT V
Another important operation is to compute the difference
between two gaussians [Tay82]. Let J ��� J  be two GADT

instances representing uncertain scalar quantities � � and�  , respectively, and let K � � J � ! ! � �����$� ��� �	� � 
 and K � � J  "! ! ���� � � � � �	�  
 . Because J � and J  are probabilistically inde-
pendent, the ��� �	� 
�� of � � > �  is a gaussian ������� ��� , where� � � � � > �  �� and (9)

� � � � �  ��� �   � (10)

We use DIFF to denote the difference between two gaus-
sians:

DIFF �  ���$� ��� �  � � � � � 
 �� ��  ���!� ��� �
Note that DIFF is not symmetric in its arguments. The SUT V
method computes DIFF:

K � � J � � SUT V � J  
 ! ! �� �� DIFF � K � � J � ! ! � K � � J  "! ! 
 � (11)

When used with PBA�Q�R , SUT V allows us to compare J � and J  
by computing the probability that "�� � � > �  � # :&)( "�� � � > �  � #Z,&� � J � � SUT V � J  
4
 � PBA�Q�R � � " �$# ! 
 � (12)

As an example, let � � and �  be two relations each having
the GADT-valued attribute ������� , which stores a tempera-
ture. Consider the following query: Join � � and �  on the
condition that � � ��������� is within 0.1 degrees of �  ���������
with probability at least 75%:

SELECT *
FROM � ��� �  
WHERE � � � ��������� � SUT V � �  ��������� 
4
 �PBA�Q�R � � >?9 � #�� 9 � # ! 
 7:9 � 	 �

2.3.3 Comparisons with WXQ�YZC
In the context of astronomical data, C. Page shows that it is
useful to compare gaussians by testing whether their con-
fidence intervals overlap [Pag96]. Page calls this kind of
join a “fuzzy join”1 and recommends that it be implemented
in all astronomical DBMS’s. GADT provides the methodWXQ�YZC to do this. Given a GADT instance J and a probability' * � 9 ��# ! , J �-WXQ�YZC � ' 
 evaluates to the

# 9�9 ' % confidence
interval. Specifically, if K � � J ! !	� ����� � , thenM � � J �-WXQ�YZC � ' 
 ! ! �� �� �Z� > ��� H � ' 
 � � � ��� H � ' 
 ! (13)

(recall the definition of H from Equation 4). Let � ��� �  be
two relations each having the GADT-valued attribute

&! �"
,

which stores the positions of stars along a certain dimen-
sion. Then we can ask the following query: Join � ��� �  on
the condition that the 30% confidence interval of � � � &! �"
intersects the 35% confidence interval of �  � &! �" :2

SELECT *
FROM � ��� �  
WHERE � � � &! �" �-WXQ�YZC � 9 � # 
%$�  � &! �" �-WXQ�YZC � 9 � #�� 
�&�('

2.4 Implementation

As a proof of concept, we performed a prototype im-
plemention of GADT as an extension to the Cornell Preda-
tor object-relational DBMS [SP97]. We defined new ab-
stract data types (ADTs) for gaussians and for intervals.
We implemented the PBA�Q�R and WXQ�YZC methods of GADT.
The computation of probabilities in PBA�Q�R relies on an ap-
proximation of ; [FGB01]. An alternative is to rely on a
pre-packaged implementation of ; , such as those found in
Mathematica, Matlab, or the GNU C Compiler. The inter-
val ADT is used to express ranges and the results of calls to
the WXQ�YZC method. In order to implement the Page join (in
Section 2.3.3) we implemented a simple Intersect method
that computes the intersection of two intervals. The gaus-
sian and interval ADTs extend Predator’s type subsystem;

1Arguably a misnomer, since it involves no fuzzy set theory.
2The interval ADT is assumed to provide a method to compute inter-

sections of intervals. We use ) as informal notation for that method.
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they do not rely on any features particular to this system
and thus can be implemented in any ORDBMS.

3 Indexing GADT Relations

When dealing with large volumes of GADT data, queries
cannot be efficiently processed by naively scanning rela-
tions; we need efficient access methods. Fast access to
GADT data can be achieved by translating GADT queries
into queries by linear constraints (QBLC). Goldstein et
al. [GRSY97] and Agarwal et al. [AAE98] have recently
shown that QBLC can be processed efficiently using stan-
dard indexing structures such as the R-tree.

Let J be a GADT instance with K � � J ! ! �  ��� � . Then J
is logically equivalent to the pair � � � � 
 , and any condition
imposed on J is equivalent to a constraint on � � � � 
 . If the
condition is given by a boolean predicate

#
then we can vi-

sualize all instances satisfying
#

as a region � in the � > �
plane (a subset of �����	� ). We call � the valid region of#
. We call any superset of � a safe region for

#
. A sim-

ple procedure for GADT query processing is the following
two-stage process:

1. Compute a safe region that is expressible as a set of
linear constraints; then

2. Use the constraints as input to a QBLC indexing
engine such as the R-tree variant of Goldstein et
al. [GRSY97].

Examples of safe region computation follow in the remain-
der of this section. More general questions of query pro-
cessing and optimization for GADT are beyond the scope of
this paper and await future research.

3.1 Safe regions for PBA�Q�R
Here we show how to process efficiently a selection on

the predicate � � " � PBA�Q�R ����
 7 ' � (14)

where � is the interval � � � � � � ! . The adaptation of the
procedure to other kinds of predicates is straightforward.
Recall from Section 2 that ; and H are related to the well-
known error function.

3.1.1 Semi-infinite intervals

Suppose first that � is a semi-infinite interval. Without loss
of generality, say � � 9 and � � �

. We distinguish two
cases: ' 7:9 � � and ' �:9 � � .

Case 1: ' 7 9 � � . By the symmetry of gaussians, we
must have �D7 9 . Then

 ��� �!� � 9 �� ! 
 � #
% � # � ; � �	� � 
4
 �

Figure 1. Valid region for � � � 9 �� ! � '+7 9 � # .

Figure 2. Valid region for � � � 9 �� ! � '+7 9 � 	 .
so Inequality 14 is equivalent to

% ' � # � ; � �	� � 
 �
Since H �	��
 is a monotonically increasing function of � , this
last inequality is equivalent to

� 7 ���ZH � % ' > # 
 � (15)

Case 2: ' � 9 � � . Reasoning similarly to Case 1, we
obtain � 7/> ���ZH � # > % ' 
 � (16)

Inequalities 15 and 16 are linear constraints that define ex-
actly the valid region for the atomic predicate of Inequality
14 for the cases '%7 9 � � and ' � 9 � � , respectively. Exam-
ples are shown in Figures 1 and 2.

4



3.1.2 Finite intervals

Suppose, without loss of generality, that � � � >�� � � ! for
some � 7 9 . We can again distinguish the two cases' 7 9 � � and ' � 9 � � . It turns out that they too give rise
to qualitatively different valid regions. But for finite inter-
vals, the valid regions are not given by linear constraints.
Consider, for example, the case 'D7/9 � � . In order for  ��� �
to lie in the valid region, � must lie in the open interval� >�� � � 
 . Inequality 14 is then equivalent to

; F � � � � �� G � ; F � � � >��� G 7 % '��
Because H �	��
 is a nonlinear function of � , we cannot obtain
a linear constraint involving � and � by applying H to both
sides of the last inequality, as we did above. Figures 3 and
4, which show plots of valid regions for ' � 9 � # and ' �9 � 	 , illustrate that the valid regions are indeed nonlinear.
Observe, however, that for any ' the valid region is enclosed
by a bounding box given by the four linear constraints

� 7/>���� � � � ��� � � 7:9 ���	� � � � �
� � (17)

The parameters � � and � � are functions of ' . We obtain� � by noting that, for fixed � ,  ��� � � � >�� � � ! 
 is maximum
at � = 0. This follows from the symmetry of ����� � , and is
illustrated in Figures 3 and 4. The parameter � � is therefore
defined by the equation

 E< � �	��� � >�� � � ! 
 � ; � � � �
� 
 � ' � ' * � 9 ��# ! �
which is equivalent to

�
� � �H � ' 
 � (18)

As for � � , we distinguish the two cases ' 7 9 � � and' � 9 � � . When ' 7 9 � � , � � is easily seen to be � itself.
When ' � 9 � � , however, the situation becomes more in-
teresting. Consider, without loss of generality, a gaussian ��� � with ���� . In the limit both of very large and of
very small � , we have  ��� �!� � >�� � � ! 
 � 9 . There is there-
fore a unique value of � , which we denote ������� , and which
is a function of � and � , that maximizes  ��� �!� � >�� � � ! 
 .
Formally, �
����� is defined by���� �  ��� �!� � >�� � � ! 
�� ��� �����  � 9 � � �!�"� 
 �
whose solution is

�
����� �$#%%& % ���' �)( � ��*� �
*�+ � (19)

Figure 3. Valid region for � � � >?9 � � � 9 � � ! � '/79 � # .
The maximum of  ��� �!� � >�� � � ! 
 , a function of � and � , is
denoted  ,*����� � � 
 :

 * ����� � � 
 �� ��  ��� �����  �� � >�� � � ! 

� #

%
� ;�F � � ��
����� G >D;�F � >���
����� G �

� #
%
� ;�F�- .0/ �21 ./ G> ;�F�- .0/ > 1 ./ G � �

where

/ �� �� �� � . �� �� ' ��354 / � #/+> #76 �
There are infinitely many values of � which are so large
that no value of � can satisfy Inequality 14. Such � sat-
isfy  ,*����� � � 
 � ' . But, in the upper halfplane 8 , there
is clearly a unique � that gives  9*����� � � 
 � ' . This is � � .
Formally,  * ����� � ��� 
 � '�� (20)

To the best of our knowledge, Equation 20 does not admit an
analytical (closed-form) solution for � � . The problem can
be recast as that of finding the root (zero) of the function: � / 
��� ��  ,*����� � � � 
 > ' . The function

:
is very shallow for

large / , however, which suggests that a root-finding algo-
rithm (such as a variant of Newton’s method) will struggle
to find a good solution if ' is small. In other words, the
problem is ill-conditioned in that regime. A better solution
is simply to tabulate a few values of  9*����� � � 
 and to use
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Figure 4. Valid region for � � � >?9 � � � 9 � � ! � '/79 � 	 .
the resulting table to look up a conservative estimate of � � .
The conservatism introduced decreases with increasing ta-
ble size, but the table need not be very large; a few extra
false positives would only negligibly impair performance.
To improve on this scheme, we can interpolate the tabulated
values using, for example, a multi-dimensional cubic spline.

3.2 Joins using SUT V
The following query can be processed using index nested

loops (INL) where the index is used to probe the inner rela-
tion � :

SELECT *
FROM � � �
WHERE � � � " � SUT V � � � # 
4
 � PBA�Q�R � � >�� � � ! 
 7 ' .

Let 3 and
"

be tuples of � and � such that 3 � " is the gaus-
sian �����Z� ��� and

" � # the gaussian ��� � � � � , respectively. Then� � " � SUT V � � � # 
 corresponds to the gaussian ��� � ������� ��� ,
from Equations 9 and 10. The results of Section 3.1.2 can
thus be used with ��� as the gaussian in question. That is,
Equations 17, 18, and 20, apply with the substitutions

��� � 2 > � 0 � ��� � �  2 � �  0
which implies

� 0 � - � � � 
  > �  2 �
Since � 2 belongs to the outer tuple, it is a constant with
respect to the inner index probe, and the last constraint is
therefore linear in � 0 .

3.3 Safe regions for WXQ�YZC
The test for confidence overlap also reduces to lin-

ear constraints on � and � . Let � � �  ���$� ��� � �  � � � � � � be two gaussians. Suppose we wish to test whether
the 	 � confidence-interval


 �
of � � overlaps with the 	  

confidence-interval

  

of �  . For convenience, put

 � �

� � ��� � � ! and

  &� � �  � �  ! . Then it is easy to show that:

� � � � � >%H � 	 � 
 � � � � � � � � � H � 	 � 
 � � �
�  � �  >%H � 	  
 �  �� �  � �  � H � 	  
 �  �

The condition for overlap is � � � �  �� �  � � � , which
is equivalent to � � � �  � H � 	 � 
 � � (21)� � 7 �  >%H � 	 � 
 � � (22)

If we view �  as fixed, Equation 21 and Equation 22 are
linear constraints involving � � and � � , and the valid region
is a curtailed cone.

4 Probability Space ADTs

Having presented an ADT for gaussian data, we now be-
gin to explore a more general theory of probabilistic data
in the ADT context. The goal is to define a framework
(concepts, operations, ADT methods) that is independent
of any particular ��� �	� 
�� , so that we would not need to un-
dertake a separate study for data whose uncertainty is given
by other distributions, for example, a Gamma distribution.
The model we present is not only ��� �	� 
�� -agnostic, but also
subsumes both continuous and discrete ��� �	� 
�� ’s under one
general framework. To accomplish this goal, our model
uses the language of measure theory.3 In what follows,
we use the term probability space ADT (PSADT) to refer
to any datatype that aims to model probabilistic data using
the ADT approach; the gaussian ADT GADT is an example
of such a PSADT.

4.1 Spaces and Events

Let � be a database relation with an attribute " . Be-
fore attribute " can be typed as probabilistic and populated
with PSADT instances, we must declare the sample set 
in which may lie the true values of the quantities repre-
sented by those instances. This is analogous to specifying
the domain of a regular attribute. Once  is specified, a
PSADT instance � can then be modeled as a probability
measure on the measurable space �  ����� 
 , where

���
is a

3We assume the reader is already familiar with the basics of measure
theory. See the books by Bartle [Bar95] or Billingsley [Bil95] for an intro-
duction.
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suitably chosen � -algebra of subsets of  . We call a mea-
surable set � * ��� an event, we call the measurable space�  ����� 
 a sample space, and we call the triple �  ����� � � 
 a
probability space. The domain of attribute " is thus the set
of all measures on the sample space �  ����� 
 . The density
or Radon-Nikodym derivative of a probability measure with
respect to some underlying measure on �  ��� � 
 is called a
probability density function or probability distribution func-
tion, and is abbreviated “ ��� �	� 
�� ”

As an example, if attribute " is to contain PSADT in-
stances that represent uncertain integer data, then the do-
main of " is the set of all probability measures on the sam-
ple space ��� � %�� 
 , where � denotes the set of integers. In
this example, the probability measures corresponding to
PSADT instances will be discrete: the ��� �	� 
�� ’s are with re-
spect to the well-known counting measure [Bar95]. GADT,
on the other hand, deals with continuous probability mea-
sures (see Section 5). Both examples fit neatly into the
PSADT framework.

We assume that the DBMS supports the abstraction of a
set, and we refer to it as the event ADT. It is ancillary to
the PSADT, and should support basic set operations such
as union, intersection, etc. In GADT the event ADT repre-
sented intervals over the real line. We need to generalize
Equations 5 and 6 to accomodate the probability space ab-
straction. Given a PSADT instance J representing a measure
� on a sample space �  ����� 
 , we define the probability
measure mapping K � � J ! ! by

K � � J ! ! �� �� � � (23)

Given an instance L of the event ADT representing an event
� * ��� , we define the event mapping

M � � L ! ! byM � � L ! ! �� �� � � (24)

Unless stated otherwise, we assume throughout this sec-
tion that the sample space is �  ����� 
 . We can now define
PSADT methods.

4.2 Event probabilities

The most fundamental operation we can perform with
probability spaces is to evaluate the probability assigned by
a measure to an event. Let J be a PSADT instance withK � � J ! !	� � . Let L be an event instance with

M � � L ! !	� � . Then
the probability of � under � is given by&)( � ,&� � � � 
 �
Accordingly, the most basic method of a PSADT is PBA�Q�R ,
which takes an event instance as argument and computes its
probability under a PSADT instance. Formally,

O � � J � PBA�Q�R � L 
 ! ! �� �� K � � J ! ! � M � � L ! ! 
 � M � � L ! ! * ��� � (25)

4.3 Conditional measures

Let J be a PSADT instance with K � � J ! ! � � , and let L be
an event instance with

M � � L ! !	���
such that � � � 
 � 9 . The

conditional probability measure ��� gives the conditional
probability of an event � , given the event

�
:

�	� � � 
 �� �� � � � $ � 

� � � 
 ��
 � * ��� � (26)

The conditional measure can be used for updating: if
�

is
new information then ��� represents the updated probabil-
ity measure. The PSADT method WXQ�Y� computes condi-
tional measures:

K � � J �-WXQ�Y� � L 
 ! ! �� �� K � � J ! !���� � ��� � � (27)

4.4 Marginalization

Let the sample set  consist of the (ordered) cross prod-
uct  � � � � � � �� . We can project out certain dimen-
sions, obtaining a marginal measure. Let � be a subset of(�#�� ����� ��� , . Without loss of generality, let � � (�#�� ����� ��� ,
with

� � �
. Let � be a measure. Then the projection of �

on � is denoted
���� and defined as� �� � � 
%�� �� � �  � � � � � ���� �	� 
 � (28)


 �! �� � � � � � � �����"�� # �� � � � � � ���� �	� * ��� �
The PSADT method PBA�Q%$ computes projections: given a
PSADT instance J , we have4

K � � J � PBA�Q%$ � � 
 ! ! �� ��'� �& � � ' � � � (29)

4.5 Comparisons

PSADT must provide a way to compare instances. Such
comparisons would be at the heart of natural joins, for ex-
ample. It turns out that, if we desire a model that treats
discrete and continuous measures on the same footing, then
the most basic and familiar kind of comparison, equality,
needs to be reexamined.

4.5.1 Similarity: A Generalization of Equality

Suppose � � � �  are two uncertain quantities that are known
to lie in  . Let �  � �   � �  � ��� 
4
 be the product sample

space, where �  � ��� 
 �� �� ( � � �	�  � � � � �  * ��� , , and
let � be a joint probability measure on �  for � � and �  .
The following discussion applies in either of the following
two situations:

4For simplicity, we do without a “set mapping” that maps an instance of
a set to the set it represents. Hence ( appears on both sides of Equation 29.
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� There are PSADT instances J ��� J  such that � is the
product measure � � K � � J � ! ! �8K � � J  ! ! .5

� There is a single instance J such that � � K � � J ! ! . (This
allows for the possibility of non-factorizable product
measures, i.e., attributes that are not probabilistically
independent.)

We wish to compute the probability
&)( � � � �  �, that� � and �  are equal. We might proceed as follows. Let��� 

 
be the equality relation

� �� �� ( �	� ��� �  
B*   � � � � �  �,
(and assume that

� * �  � ��� 
 ). Then the probability that
the values of � � and �  are equal is simply&)( � � � �  �, �� �� &)( �	� ��� �  
B* � , � � � � 
 � (30)

The problem with this approach is that it works when �
is discrete but not when it is continuous: in the latter case
� � � 
 is generally zero. This is just a multi-dimensional
analogue of the familiar fact that, given a continuous ��� �	� 
��
on � , there is zero probability that the true value equals any
one real number.

The natural solution is to generalize the notion of equal-
ity, by replacing

�
with a larger relation � � 

 
. � is the

set of all pairs �	� � � �  
 such that � � and �  are considered to
be similar to one another, in whatever sense is appropriate
to the application at hand. We require that � be reflexive,
symmetric, measurable (i.e., � * �  � ��� 
 ), and a superset
of

�
. We do not require that � be transitive. We call such

a relation � a similarity event. It is a relation on  and an
event in 

 
. The probability of equality in Equation 30 then

becomes a probability of similarity under � :&)( � � � �  �, � � � � 
 � (31)

As an example of a similarity relation, suppose  is a
metric space with metric 5 .6 Let �+*  . Then the neighbor-
hood of radius � centered on � is denoted by ��� �	��
 and de-

fined by ��� �	��
?�� �� (
	 *  � 5 �	� ��	 
�� � , . Let ��  � �
be a function, called a radius function. Let

��� �� �� ( �	� ��	 
B*   � 	 * � � � � � �	��
�� � * � � � � � � 	 
 ,
(32)

be a relation on  . For reasonable choices of the � -algebra���
, ��� will be a measurable set and thus will be a similarity

event. We call it metric similarity under the radius function
� . The simplest radius function is constant:

��� * � ��
 �+*  � � �	��
 � � � (33)

5The � notation refers to the product measure; as always, we assume���
and

���
are probabilistically independent.

6Recall that a set � is a metric space if there is a function ��� �"!#
, called a metric on � , satisfying: �%$ &(')&+*-,/.10+&324� ; �%$ &('�5%*6,�%$ 57'�&+*80+&('�5-29� ; and �%$ &(';:<*>=?�%$ &('�5%*A@B�%$ 57';:<*80+&('�57';:C29� .

We can obtain a more sophisticated radius function if the
metric space  is also a norm space, that is, a vector space
with an associated norm D �EDF  � � . The norm in-

duces a metric 5>G�H GZ�	� ��	 
 �� �� D � > 	 D � 
 � ��	 *  . Now
let . * � be a small positive real number. Then the radius

function ��I �	��
 �� �� .JD � D gives rise to a metric similarity
���1K (substitute ��I for � in Equation 32). This similarity
event judges two quantities (vectors) to be similar if their
difference is small compared to their norms.

Choosing a similarity relation involves a degree of ar-
bitrariness and subjectivity. This is not surprising. A cer-
tain amount of subjectivity should be involved in decid-
ing whether two real-valued attribute values are equal, even
when there is no uncertainty associated with them. Is the
difference between

#
and

# � # 9 �>L so significant as to make
the numbers unequal? Only the user can decide the answer,
and the verdict will depend on the situation at hand. Users
therefore rely on similarity relations even when the data are
certain. The only additional restriction imposed in the pres-
ence of uncertainty is that the similarity relations be mea-
surable.

4.5.2 Total Variation

Probability measures can be compared using the total vari-
ation distance (TVD). The TVD between the two measures
� ��� �  is defined as half the measure assigned to the en-
tire sample set  by the total variation of their difference
[Bar95]:

TVD � � ��� �  
 � #
% � � � > �  � �  
 �

TVD is symmetric in its arguments. It is used to quantify the
difference between � � and �  as measures. An example
of such a use can be found in Barbará et al. [BGMP92]. In
some cases it is natural to interpret a small TVD as indicating
a high probability of equality of the underlying data values.
This is especially true in the case of physical measurement,
where the ��� �	� 
�� ’s are gaussian and where their expected
values are interpreted as best estimates of measurements.
The TVD is also appealing because it is a metric and thus
renders the vector space of measures a metric space.

The PSADT method �-M�S computes total variations:

O � � J ���-M�S � N�
 ! ! �� �� TVD � K � � J ! ! � K � � N ! ! 
 �
4.5.3 Confidence overlap

Probability measures often have canonical choices of confi-
dence sets. For example, the interval � > #���# ! is the 68% con-
fidence interval of the gaussian  =< � � . We use CONF to de-
note this mapping, as in CONF �  ��� � � 9 � ��� 
 � � ��>$� � � � � ! .
The notion of confidence gives rise to the following com-
parison. Let J ��� J  be PSADT instances with K � � J � ! ! � � �
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and K � � J  "! ! � �  . Given ' ��� '  * � 9 ��# ! , we say � � and
�  are confidence-equal if their respective confidence sets
intersect:

CONF � � ��� ' � 
 $ CONF � �  � '  
 &� ' �
Informally, for smaller ' � and '  , confidence-equality im-
plies that the true values are “closer” to one another. As
mentioned above, this is the comparison that underlies the
“fuzzy join” proposed by Page [Pag96]. It is useful, for ex-
ample, when joining astronomical tables based on the posi-
tions of stars. We emphasize that CONF is not defined for ar-
bitrary probability measures, but usually only for measures
with parametric ��� �	� 
�� ’s.

The PSADT method WXQ�YZC computes confidence sets:M � � J�� WXQ�YZC � ' 
 ! ! �� �� CONF � K � � J ! ! � O � � ' ! ! 
 � (34)

5 GADT revisited

We now demonstrate that GADT is an instance of the
foregoing model: it is a PSADT that represents gaussian��� �	� 
�� ’s with respect to the Lebesgue measure

�
on the real

line. Specifically, if � is the Borel � -algebra on � , then
the domain of a GADT attribute is the set of all measures on
the sample space � � � � 
 conforming to the following two
restrictions:

1. Only intervallic events are supported. Compare Equa-
tion 6 with Equation 24.

2. All ��� �	� 
�� ’s are with respect to
�

and are given by
Equation 1.

As Section 2 shows, GADT is useful in spite of restriction
1. That is, we can pose many interesting queries without
needing to take unions and intersections of intervals. How-
ever, restriction 2 gives rise to at least two complications.
The first is the following complication with WXQ�Y� . Given
an instance J such that K � � J ! !��  ��� � , and given a condition-
ing interval L , the instance N�� J �-WXQ�Y� � L 
 would store L
in its state, along with � and � , and would implement PBA�Q�R
using Equation 26. The problem is that K � � N ! ! is no longer
gaussian, and, for example, the indexing techniques given
in Section 3 would no longer apply. One solution is to use N
only as an intermediate result and to forbid its being stored
in a relation. This is clearly a disadvantage if we wish to useWXQ�Y� to update the database. Restriction 2 also gives rise
to a second complication that we deal with in Section 5.1.

GADT provides two ways to compare values: WXQ�YZC andSUT V . WXQ�YZC is obviously the same ADT method as that dis-
cussed in Section 4.5.3 (compare Equation 13 with Equa-
tion 34). SUT V can be understood as a change of variables
followed by an integration [Tay82]. Referring to Equa-
tion 12, if � � K � � � J � � SUT V � J  
4
 ! ! , then � � � > � � � ! 
 corre-
sponds to the probability assigned by the joint ��� �	� 
���� to

the set �	� � ( �	� ��	 
�* �   � � > 	 � � � ,
. In other words,

�	� is a similarity event, and SUT V is used to implement met-
ric similarity (Equation 33). For example, the query in Sec-
tion 2.3.2 uses metric similarity with radius

� � 9 � # .
Thus, GADT implements the PSADT notions of event, � -

algebra, probability, comparison, and similarity, and it en-
dows each of these with semantics specific to gaussians. It
is an instance of a PSADT.

5.1 On the possibility of arithmetic operations

Having defined SUT V , a method which computes the dif-
ference between two uncertain quantities, the reader may
well ask if it is possible to define a method that computes
the sum, or the product, or the quotient, or even an arbitrary
scalar function of uncertain quantities. This would amount
to an arithemtic of uncertain quantities and would provide
a way to propagate uncertainties from simple PSADT in-
stances to compound PSADT instances. It would also en-
able us to manipulate uncertain data as naturally as if they
were simple numbers.

There is some hope of achieving such an arithmetic
in GADT. To illustrate, let 
  � � � � be an

�
-ary

scalar function, and let � ��� ����� � � � be uncertain quantities
with gaussian ��� �	� 
�� ’s �����$� ��� � ����� � ������� �� , respectively. It
is a fact that, if � � is small compared to ��� for all

� *(�#�� ����� ��� , , then 
 �	� ��� ����� � � � 
 is normally distributed with��� �	� 
�� �����Z� ��� [Tay82], where7

��� � 
 � � ��� ����� � � � 
 � �	� � (35)

��� � #%%& ��
� � � 3 � �8F � 
� � � G � � ��� � � � � � ��� � � ���$� � � � � ����� 6

 
�

When 
 �	� � � �  
 � � ��� �  , Equation 35 is exact regardless
of the size of � � � � � and �  � �  [Tay82]. But for general 

the best we can hope for is accuracy to first-order in � � � � � .
Such an arithmetic extension to GADT is therefore useful
only in applications that do not require the exact compu-
tation of probabilities. This also suggests that the correct��� �	� 
�� for 
 is not gaussian, so that GADT boundaries have
already been crossed (restriction 2 in Section 5). Such com-
plications are manageable, however, and we see that arith-
metic for gaussians is feasible, but only because gaussians
have many special properties. Thus, although we could try
to generalize our attempts at arithmetic by defining arith-
metic methods for non-gaussian ��� �	� 
�� ’s, there is probably
no way to implement them, because neat formulas such as
Equation 35 probably do not exist for those ��� �	� 
�� ’s. In con-
clusion, there is hope that arithmetic can work with GADT,
but only because it is special. Whether arithmetic can also
work with a general PSADT is a matter for future research.

7These formulae are used in scientific data analysis to propagate mea-
surement error.
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6 Related Work

Probabilistic data models (PDM’s) have been investigated
extensively in the literature, but to the best of our knowledge
all of the previous models support only discrete ��� �	� 
�� ’s.
The beginnings of the field can be viewed as extensions of
early work on data incompleteness [Lip79, IL84, AKG99].

Wong treats data values as random variables, and regards
query processing on uncertain data as a matter of statistical
inference [Won82]; his paper has strong connections to the
ideas of Lipski [Lip79]. The PDM’s of Cavallo and Pittarelli
extend each record by a probability stamp such that the sum
of all probability stamps over a relation equals one; thus a
relation directly encodes a probability distribution [CP87,
Pit94].

Lakshmanan and Sadri include probabilities into the
rule system of a deductive database through an algebra of
confidence-intervals and a probabilistic calculus [LS94].
They also provide results on soundness, completeness, ter-
mination, and complexity of their model. Lakshmanan et
al. give a probablistic relational model that aims for maxi-
mum flexibility by supporting, multiple strategies for com-
bining basic events into complex events [LLRS97].

There is also a considerable body of work on fuzzy rela-
tions [AR84, KF88, RM88]. A number of authors have al-
ready observed, however, that the fuzzy approach to uncer-
tainty in data is signficantly different from the probabilis-
tic approach [BGMP92, DS96, LLRS97]. Generally, fuzzy
logic is not concerned with uncertainty, but with compen-
sating for the lack of expressivity in a language.

The work of Barbará et al. has been particularly influ-
ential for us [BGMP92]. Their model represents a discrete
probability distribution as a first-class value, in the form of a
nested relation. Dey and Sarkar present a model that is a hy-
brid of the PDM’s by Barbará et al. [BGMP92] and Cavallo
and Pittarelli[CP87] (see [DS96]). Their relations incorpo-
rate probability stamps that are not required to add up to
unity.

7 Conclusions

We introduced GADT, a new probabilistic ADT that is es-
pecially suitable for representing data in the emerging class
of applications that monitor the physical world. Our so-
lution relies on ORDBMS ADT technology and supports
continuous ��� �	� 
�� ’s. We also demonstrated that fast access
methods exist for GADT. We believe that GADT is an impor-
tant step towards general database support for data whose
uncertainty is represented by continuous ��� �	� 
�� ’s. We also
presented the general notion of a probability space ADT
(PSADT) and showed how GADT conforms to it. The
PSADT model is defined in terms of measure-theory and
thus encompasses both discrete and continuous ��� �	� 
�� ’s.

This paper represents our intial work on probabilistic
data models, and there are numerous avenues for future
work:

� Physical measurements often involve more than one
dimension. For instance, most astronomical data are
represented as two-dimensional gaussians. We intend
to study such multi-dimensional ��� �	� 
�� ’s.

� Gaussians are not the only relevant ��� �	� 
�� for mod-
elling physical measurements. For instance, heavy-
tailed non-gaussian distributions have been intro-
duced to model phenomena with impulsive back-
ground noise [Mid99]. For these reasons and those
given in Section 5.1, we are interested in the challenge
of supporting arbitrary ��� �	� 
�� ’s.

� Since we are interested in sensor data reduction, we
would like to extend the model by introducing aggre-
gate operators.

� We are currently investigating how we can use GADT

to represent the results of approximate query answers,
where the uncertainty associated with query incom-
pleteness combines with the uncertainty inherent in the
measurement data.

� Interesting questions regarding the processing and op-
timization of general queries on uncertain data await
further exploration.

� Since most continuous ��� �	� 
�� ’s represent real-valued
data, it is worth inquiring into the possibility of a gen-
eral “probabilistic arithmetic.”
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[BGMP92] Daniel Barbará, Hector Garcia-Molina, and Daryl
Porter. The management of probabilistic data. TKDE,
4(5):487–502, 1992.

[Bil95] P. Billingsley. Probability and Measure. Wiley, 1995.

[BS00] Philippe Bonnet and Praveen Seshadri. Device
database systems. In ICDE 2000, San Diego, Califor-
nia, USA, page 194. IEEE Computer Society, 2000.

[CP87] Roger Cavallo and Michael Pittarelli. The theory of
probabilistic databases. In Peter M. Stocker, William
Kent, and Peter Hammersley, editors, VLDB 1987,
Brighton, England, pages 71–81. Morgan Kaufmann,
1987.

[DS96] Debabrata Dey and Sumit Sarkar. A probabilistic re-
lational model and algebra. TODS, 21(3):339–369,
1996.

[EGHK99] Deborah Estrin, Ramesh Govindan, John Heidemann,
and Satish Kumar. Next century challenges: scalable
coordination in sensor networks. In Proceedings of
the fifth annual ACM/IEEE International Conference
on Mobile Computing and Networking August 15 -
19, 1999, Seattle, WA USA, pages 263–270, 1999.

[Fel66] W. Feller. An Introduction to Probability Theory and
its Applications. Wiley, 1966.

[FGB01] Anton K. Faradjian, Johannes Gehrke, and Philippe
Bonnet. A measure-theoretic probabilistic data
model. Technical report, Cornell University, 2001.

[GRSY97] Jonathan Goldstein, Raghu Ramakrishnan, Uri Shaft,
and Jie-Bing Yu. Processing queries by linear con-
straints. In PODS, pages 257–267, 1997.
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