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Abstract – Collaborative signal processing algorithms in
sensor networks must be robust to device failures because
one expects a large number of failures due to the harsh con-
ditions in which they are usually deployed. In this paper, we
study two distinct approaches, value-fusion and decision-
fusion, for achieving fault-tolerance in collaborative target
detection algorithms. In value-fusion, sensor devices first
exchange their measured values to arrive at a fault-tolerant
consensus on the measurement. Then each device makes
an independent decision as to whether or not a target is
present based on the consensus measurement. In contrast,
in decision-fusion, each device first makes an independent
decision as to whether or not a target is present and then
the devices exchange their decisions to arrive at a fault-
tolerant consensus decision. In this paper, we compare the
performance of value and decision fusion using two mea-
sures: probability of correct detection and probability of
false alarm. The results show that if fault-tolerance is not
required, then value-fusion is better than decision-fusion
and whereas if fault-tolerance is essential, then decision-
fusion is better than value-fusion.

Keywords: Collaborative signal processing, data fusion,
decision, fault tolerance, sensor network.

1 Introduction

Wireless devices are becoming an integral part of electronic
systems in everyday use. Today’s wireless devices are not
just the cell phones, but can be intelligent and smart de-
vices with sensing, processing and communication capabil-
ities. Such devices may consist of communication modules
using wireless technologies such as bluetooth [2] or IEEE
802.11 standard [5]. They may also contain special pur-
pose sensors and processors as in the case of SensIT pro-
gram [8]. These small and smart devices termed assensors
or microsensors, can form networks and collectively per-
form tasks that no single device may perform by itself. Ex-
amples of such tasks include detection, classification, and
tracking of an object in a region. Such tasks may use all

three, namely sensing, processing, and communication ca-
pabilities of these micro sensors. When performing a target
detection task, multiple sensors in a region detect the pres-
ence of an object using sound, motion, or heat associated
with the object of interest. The sensors may exchange in-
formation about the presence or absence of the object or
energy level associated with the object and after perform-
ing collective signal processing, may reliably determine the
nature of the object and arrive at a common conclusion. Be-
low we describe a wireless sensor network architecture that
is being developed in the SensIT program to support these
objectives.
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Figure 1: Wireless sensor network

The basic micro sensor network system is shown in Fig-
ure 1. In this figure, each black dot represents an inexpen-
sive microsensor with positioning, multiple sensing, pro-
cessing, and communication capabilities. Consider a task
assigned to the sensors in region R to collectively make a
decision about the presence of an object in this region. The
sensors using their varied sensing capabilities can make a
collective decision using one the following two alternatives.
1) Each sensor may make its independent decision using its
own measured values and then sensors may exchange their
decisions among each other to arrive at a consensus by fus-
ing all decisions. 2) All sensors exchange their measured
values and then each sensor makes its own individual and
independent decision by fusing the collected values. We
call the first methoddecision fusionand the second method
value fusion.



Comparative study of these two methods of fusing infor-
mation is the focus of this paper. In particular, we com-
pare these two methods for theiraccuracyunder the fol-
lowing two conditions: 1) All sensors are assumed to be
fault free and 2) some of the sensors may be faulty. Note
that in the second case, faulty sensors may provide incor-
rect values or decisions to the other sensors in the sensor
network. We must add that the two approaches can also be
compared using other parameters such as power consump-
tion, the number of message exchanges, or the communi-
cation bandwidth required to arrive at consensus. However,
these are not the subject of this paper. Some of these pa-
rameters have been studied in literature [1, 9].

This paper is organized as follows. In section 2, we
present the system model and introduce the metrics used
to assess the collaborative detection algorithms. Section 3
describes the algorithms for value and decision fusion for
fault free and faulty systems. Section 4 introduces the sim-
ulator used to evaluate performance of the algorithms and
section 5 presents the simulation results. The paper con-
cludes with section 6.

2 System model and problem formu-
lation

In this section we introduce the model of sensor network
used for target detection as well as the fault model and met-
rics used to evaluate the system performance.

2.1 Network model

As mentioned in section 1, we assume that a set of sensors
deployed in a regionR, shown in Figure 1, is to determine
if a specified target is present or not in the region. To detect
the target, each sensor can measure an energy level that is
a function of its distance to the target and the background
noise. We assume the noise to be Gaussian with zero mean
and independent at different sensors. We also assume that
sensors can communicate with each other. The goal of the
detection algorithms is to estimate if a target is present or
not in a region. This requires collaboration among the sen-
sors deployed in the region since sensors have only a lim-
ited perception of the complete region. For example, if the
target lies in the corner of the region or in a neighboring re-
gion, it may be detected by a small subset of all sensors in
the region. However, the final decision for the region needs
to be “present” in the first case and “absent” in the second
case. The all set of sensors can come to this decision only
by fusing their information into a global description of the
region.

The two approaches proposed to solve this problem are
value fusion and decision fusion. These approaches are il-
lustrated in Figure 2. In value fusion, sensors communicate
their energy measurement values to each other and decide
using the setS of all values whether a target is present in
the region. In decision fusion, each sensor makes a decision
first by using its own energy measurement value, the sen-
sors then communicate decisions to each other and finally
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Figure 2: Two approaches for fusion. The grey sensors are
faulty and have indeterminate behavior.

decide using the set of decisions.
When collaborating, the decision made by the sensors

can be corrupted by faulty sensors present in the region. We
describe in the next subsection the type of faulty behavior
assumed in this study and a solution that can be adopted to
tolerate such behavior.

2.2 Fault model

The network considered is likely to contain some faulty
sensors due to harsh environmental conditions. The behav-
ior of faulty sensors is assumed to be arbitrary or malicious,
e.g. they can send incorrect information and can even be in-
consistent when sending information to different sensors as
shown in Figure 3.
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Figure 3: Byzantine faulty behavior

Four sensors (A, B, C and D) are deployed in the region
as a target object is present in the neighboring region. Sen-
sor A measures an energy level of 1.4 (including noise)
whereas sensor B and D measure an energy level of 0.5
and 0.1 respectively. Sensor C is assumed to be faulty and
sends different measurements to the other sensors (10, 1
and 10 to A, B and D respectively). As a result, non faulty
sensors obtain different pictures of the region and may con-
clude differently on the presence of the target (e.g. sensor
A and D may conclude that a target is present while sensor
B concludes that no target is present). This faulty behavior
is referred as Byzantine [6]. In the presence of such faults,
agreement needs to be performed for all the non faulty sen-
sors to arrive at the same final decision. Numerous studies
have been conducted on agreement and it is proven that to
reach agreement in the presence ofm Byzantine faulty sen-
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Table 1: Example of exact agreement on values, sensor C
being faulty

sors, the network must containN � 3m + 1 sensors [6].
In this paper, we use the exact agreement algorithm devel-
oped by Lamport et al. in [6]. This algorithm guarantees
that when exchanging values, all the non faulty sensors ob-
tain the same set of values and all the values sent by non
faulty sensors are part of this set. Inconsistent values sent
by faulty sensors are replaced by a majority vote or a de-
fault value. An example of exact agreement performed on
the four sensors of Figure 3 is presented in Table 1. After
exact agreement is performed, inconsistent values sent by
sensor C are replaced by a common value (i.e. 10.0). Note
that in this example, the final decisions of the non faulty
sensors are incorrect but they are consistent.

2.3 Performance metrics

The performance of the algorithms can be measured in
terms of precision and accuracy [3, 6]. As shown in the
previous subsections, sensors need to fuse their values to
make a decision representative of the complete region and
faults can lead to inconsistent fused values obtained at dif-
ferent sensors. Precision measures the closeness of deci-
sions from each other, the goal being that all non faulty
sensors make the same decision. Accuracy measures how
well sensor values represent the environment, the goal be-
ing that the decision of non faulty sensors is “0” whenever
the target is absent and “1” whenever it is present. Note
that we have no control on the decision made by faulty sen-
sors. The algorithms developed for fusion in the presence of
faults use exact agreement to solve the inconsistency prob-
lem. Therefore, all the sensors obtain the same set of values
or local decisions and make the same final decisions and
both approaches for fusion have perfect precision. On the
other hand, the accuracy is not perfect and is measured by
the false alarm probability and the detection probability as
defined below.

The false alarm probabilityis the conditional
probability that the sensors report the presence of

an object given that there is no object in the re-
gion.

Thedetection probabilityis the conditional prob-
ability that the sensors report the presence of an
object given that there is an object in the region.

3 Algorithms

In this section, we describe the target detection algorithms
used for value fusion and decision fusion in the absence and
in the presence of faults, respectively.

3.1 Value fusion algorithms

In value fusion, the sensors in the network exchange their
local energy values and fuse them by finding the average.
The final detection decision is made by comparing this
final value to a threshold�v. The algorithm for value fusion
in the absence of faults (Alg VFNFS) is described below.

// value fusion - no faulty sensors (VFNFS)
at eachnodef

compute energy;
exchange values;
compute average of values;
compare average to threshold�v for final decision;

g

The energy measurements of all sensors contain inde-
pendent Gaussian noise with zero mean and variance�2.
The average of such noise overN sensors is a Gaussian
zero mean noise with variance�2=N [4]. Therefore,
provided thatN is large enough, the fused value has a
low noise and simple comparison to a threshold gives an
accurate decision.

In the presence of faulty sensors, extra steps must be
added to the fusion algorithm to achieve precision and
accuracy. As mentioned in the previous section, we use
exact agreement to achieve precision in the system. Exact
agreement guarantees that all the non faulty sensors obtain
the same setS of values and the values sent by the non
faulty sensors are part of this set. However, consistent
outlying values can remain in the set, as shown in Table 1.
To prevent corruption of the decision by these outliers, the
largestm and smallestm values are dropped from the set
S and the average value is computed over the remaining
N � 2m values. The algorithm for value fusion in the
presence of faults (Alg VFFS) is described below.

// value fusion - faulty sensors (VFFS)
at eachnodef

compute energy;
exchange values with exact agreement;
drop largestm and smallestm values;
compute average of remaining values;
compare average to threshold�v for final decision;

g



Since the fused value is the average overN � 2m
values, lower accuracy is expected from the fault tolerant
value fusion than the non fault tolerant value fusion.
Furthermore, many meaningful values may get dropped
(e.g. the high energies measured by the sensors closest
to the target). Therefore, more sensors need to detect the
target for the system to make an accurate decision. Thus,
the SNR must be higher to obtain similar performance with
faults as without faults.

3.2 Decision fusion algorithms

In decision fusion, the sensors in the network make a local
decision on the presence of the target by comparing their
own energy measurement to a threshold�d. Then they
exchange their local decision and fuse them by averaging.
The final detection decision is made by comparing this
fused decision to a threshold�. The algorithm for value
fusion in the absence of faults (Alg DFNFS) is described
below.

// decision fusion - no faulty sensors (DFNFS)
at eachnodef

compute energy;
compare to�d to arrive at a local decision;
exchange decisions;
compute average of local decisions;
compare average to� for final decision;

g

As in value fusion, the fused data is obtained by av-
eraging data received from all the sensors. Different values
of � lead to different performance in term of detection
probability for constant false alarm probability. Through
simulation, we found that the best performance were
achieved when� = 1=N . That means that the final
decision is “detect” as soon as one of theN sensors reports
a detection.

In the presence of faults, exact agreement is used to
achieve precision in the system. However, as opposed
to value fusion, no data is dropped since the corruption
capability of the faulty sensors is limited to sending wrong
binary decisions. The algorithm for decision fusion in the
presence of faults (Alg DFFS) is described below.

// decision fusion - faulty sensors (DFFS)
at eachnodef

compute energy;
compare to�d to arrive at a local decision;
exchange local decisions with exact agreement;
compute average of local decisions;
compare average to� for final decision;

g

The value of the second threshold� needs to be in-
creased compared to the non faulty case. Indeed, asm
sensors out ofN can be faulty, the final decision cannot
rely on fewer thanm sensors and� must be betweenm=N
and(N �m)=N . For example, if� � m=N , the incorrect

decisions sent bym faulty sensors in the absence of a
target result into a “detect” final decision, whatever the
decision of non faulty sensors are, and therefore the false
alarm probability is one, which is undesirable. We found
that best performance was obtained for� = :43.

4 Simulator design

We used simulation to compare value and decision fusion
under various environmental conditions such as varying
number of sensors, varying SNR, and varying number of
faulty sensors. The sensors are assumed to be evenly dis-
tributed over a region of size4 � 4, the distance unit being
left undefined, and the energy measured by sensori is a
function of its distance to the target objectdi, as defined by
the following equation:

E(di) =
K

(1 + di)3
(1)

whereK is the maximum energy at the target object. For
our energy model to be valid for very smalldi, we used the
term (1 + di) in the denominator. Note that the constant
1 is relative to the distance unit and for large distancesdi,
1 + di ' di and the energy model becomes similar to the
standard energy models for signal transmission [7]. The
zero mean Gaussian noise is generated with variance�2 =
1 and the SNR is defined as the peak SNR at the target
object.

SNR = 10 log
10
(
K

�2
) = 10 log

10
(K) (dB) (2)

The Byzantine faulty behavior is generated as follows. In
the absence of target, faulty nodes report a high value and
in the presence of target in the region, they all report a low
value. To compare value fusion and decision fusion, we
measured the detection probability for constant false alarm
rates. This requires first to find the adequate thresholds to
obtain a given false alarm probability and then use these
thresholds to measure the detection probability. Finally, the
simulation results are averaged over a large number of iter-
ations to obtain 80% confidence that the results are within
10% of the mean values.

5 Comparative performance

We now present simulation results for the detection algo-
rithms proposed without and with faults in the system.

5.1 Without faulty sensors

Figures 4 and 5 show the relative performance of the two
algorithms for 4, 25 and 49 sensors and varying SNR be-
tween 5dB and 19dB. The graph of Figure 4 is derived for a
false alarm probability of 3% and the graph of Figure 5 for
a false alarm probability of 8%. We notice that detection
probabilities increase as the SNR increases and detection
probabilities are higher when the false alarm probability is
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Figure 4: Non Fault Tolerant Algorithms (a)

8% as opposed to when it is 3%. As far as comparing the
two methods of fusion, the graphs show that decision fu-
sion and value fusion perform almost equally when there
are only four sensors in the region of interest. However,
value fusion is substantially better when sensor density is
medium, 25 sensors, to high, 49 sensors.
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Figure 5: Non Fault Tolerant Algorithms (b)

5.2 With faulty sensors

Two parameters specify the simulation system in the pres-
ence of faults:m, the number of faulty sensors that the
algorithm can tolerate; andt, the number of faulty sensors
actually present in the system. In all the simulation runs,
0 � t � m � bN�1

3
c. We first evaluate the performance of

value and decision fusion whenm = t = bN�1
3
c. The per-

formance for 4, 25 and 49 sensors as a function of the SNR
is presented in the graphs of Figure 6. The thresholds are
set to obtain a constant false alarm probability of 3% and
the graphs show that decision fusion performs consistently
better with 4, 25 or 49 sensors in the system. The same be-
havior was also observed when comparing the two methods
with a higher false alarm probability of 8%, but the graphs
are not shown here.
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Figure 6: Fault Tolerant Algorithms withm = t = bN�1
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Figure 7: Fault Tolerant Algorithms withm = bN�1
3
c and

variablet

Our second simulation measures the effect of the num-
ber of faulty sensors present on the performance when try-
ing to tolerate as many faulty sensors as possible. Thus,



0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

D
et

ec
tio

n 
pr

ob
ab

ili
ty

Variable number of faults t=m SNR= 16dB

Value fusion
Decision fusion

49 sensors 

25 sensors 

Figure 8: Fault Tolerant Algorithms with variablem = t

we setm = bN�1
3
c and variedt from 0 to m, working

with 25 sensors and a SNR of 18dB. The thresholds are set
to obtain a false alarm probability of 5% whent = 6 and
we measure both the detection probability and false alarm
probability for varyingt, as reported in the graph of Fig-
ure 7. We notice that the false alarm probabilities of value
and decision fusion stay almost equal for varyingt. When
comparing detection probabilities, we find again that deci-
sion fusion performs better than value fusion fort = m but
the conclusion reverses whent=N is below 8%. Value fu-
sion is superior to decision fusion in the general case when
no or only a few sensors are faulty. However, the number
of faulty sensors is usually not know a priori and decision
fusion offers a graceful degradation whent increases.

Our last simulation evaluates which fusion method is su-
perior if one knows a priori how many faulty sensors are
present in the system. Indeed, we showed in section 5.1
that whent = 0 value fusion is superior to decision fusion
(provided that the sensor density is not too low). And we
showed in the previous paragraphs that whent = bN�1

3
c

decision fusion is superior to value fusion. Ift is known a
priori, the best performance is obtained by settingt = m so
as to drop as few values as possible. Thus we setm = t
and variedt from 0 to bN�1

3
c for 25 and 49 sensors in

the system and a SNR of 16dB. The thresholds are set to
obtain a constant false alarm probability of 5%. The re-
sults are presented in the graph of Figure 8. As observed
in previous simulations, value fusion is superior to decision
whenm = t = 0 and the conclusion is reversed when
m = t = bN�1

3
c. The two approaches are equivalent for

t=N ' 20% and the gap between value and decision fusion
is larger when sensor density is larger.

6 Conclusion

In this paper, we studied the problem of collaborative target
detection in a sensor network without and with faulty sen-
sors. We introduced and compared two methods for fault
tolerant data fusion, namely value fusion and decision fu-
sion. Comparison of the two methods is presented under
various environmental conditions and we study in particu-
lar the effect of the number of faulty sensors in the system
on the fusion performance.

Our simulation results show that value fusion is supe-
rior to decision fusion when the sensor network is highly
reliable and fault free. However, as faulty sensors are in-
troduced in the system, the performance of value fusion de-
grade faster than the performance of decision fusion and
decision fusion becomes superior to value fusion.
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