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ABSTRACT
In order to monitor a region for tra�c traversal, sensors
can be deployed to perform collaborative target detection.
Such a sensor network achieves a certain level of detection
performance with an associated cost of deployment. This
paper addresses this problem by proposing path exposure
as a measure of the goodness of a deployment and presents
an approach for sequential deployment in steps. It illustrates
that the cost of deployment can be minimized to achieve the
desired detection performance by appropriately choosing the
number of sensors deployed in each step.

Categories and Subject Descriptors
C.2.4 [Computer-CommunicationNetworks]: Distributed
Systems|distributed applications; C.3 [Special-purpose
and Application-based Systems]: [signal processing sys-
tems]

General Terms
Algorithms, Design, Performance

Keywords
collaborative target detection, deployment, exposure, sensor
networks, value fusion

1. INTRODUCTION
Recent advances in computing hardware and software are

responsible for the emergence of sensor networks capable of
observing the environment, processing the data and making
decisions based on the observations. Such a network can
be used to monitor the environment, detect, classify and lo-
cate speci�c events, and track targets over a speci�c region.
Examples of such systems are in surveillance, monitoring of
pollution, tra�c, agriculture or civil infrastructures [6]. The
deployment of sensor networks varies with the application
considered. It can be predetermined when the environment
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is su�ciently known and under control, in which case the
sensors can be strategically hand placed. The deployment
can also be a priori undetermined when the environment is
unknown or hostile in which case the sensors may be air-
dropped from an aircraft or deployed by other means, gen-
erally resulting in a random placement.
This paper investigates deployment strategies for sensor

networks performing target detection over a region of inter-
est. In order to detect a target moving through the region,
sensors have to make local observations of the environment
and collaborate to produce a global decision that reects the
status of the region covered [2]. This collaboration requires
local processing of the observations, communication between
di�erent nodes, and information fusion [7]. Since the local
observations made by the sensors depend on their position,
the performance of the detection algorithm is a function of
the deployment. One possible measure of the goodness of
deployment for target detection is called path exposure. It is
a measure of the likelihood of detecting a target traversing
the region using a given path. The higher the path expo-
sure, the better the deployment. The set of paths to be
considered may be constrained by the environment. For ex-
ample, if the target is expected to be following a road, only
the paths consisting of the roads need to be considered.
In this study, the deployment is assumed to be random

which corresponds to many practical applications where the
region to be monitored is not accessible for precise place-
ment of sensors. The focus of this paper is to determine the
number of sensors to be deployed to carry out target detec-
tion in a region of interest. The tradeo�s lie between the
network performance, the cost of the sensors deployed, and
the cost of deploying the sensors. This paper is organized
as follows. In section 2, a de�nition for path exposure is
proposed and a method to evaluate the exposure of a given
path is developed. In section 3, the problem of random de-
ployment is formulated and several solutions are presented.
An analytical study of these solutions is given in section 4
and section 5 presents simulation results that are used in
section 6 to determine the optimum solution for a given en-
vironment. The paper concludes with section 7.

2. PATH EXPOSURE
In this section, a model for sensor network target detection

is proposed, a de�nition of path exposure is presented and
expressions for evaluating this path exposure are developed.

2.1 Model
Consider a rectangular sensor �eld with n sensors de-
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ployed at locations si, i = 1; : : : ; n. A target at location
u emits a signal which is measured by the sensors. The sig-
nal from the target decays as a polynomial of the distance.
If the decay coe�cient is k, the signal energy of a target at
location u measured by the sensor at si is given by

Si(u) =
K

jju� sijjk
(1)

where K is the energy emitted by the target and jju � sijj
is the geometric distance between the target and the sensor.
Depending on the environment the value k typically ranges
from 2.0 to 5.0 [4].
Energy measurements at a sensor are usually corrupted

by noise. If Ni denotes the noise energy at sensor i during a
particular measurement, then the total energy measured at
sensor i, when the target is at location u, is

Ei(u) = Si(u) +Ni =
K

jju� sijjk
+Ni:

The sensors collaborate to arrive at a consensus decision as
to whether a target is present in the region. We consider two
basic approaches for reaching this consensus: Value fusion
and Decision fusion [3]. In value fusion, one of the sensors
gathers the energy measurements from the other sensors,
totals up the energy and compares the sum to a threshold
to decide whether a target is present. If the sum exceeds
the threshold, then the consensus decision is that a target
is present. In contrast, in decision fusion, each individual
sensor compares its energy measurement to a threshold to
arrive at a local decision as to whether a target is present.
The local decisions (1 for target present and 0 otherwise)
from the sensors are totaled at a sensor and the sum is com-
pared to another threshold to arrive at the consensus deci-
sion. In some situations, value fusion outperforms decision
fusion and vice versa.

2.1.1 Value Fusion.
The probability of consensus target detection when the

target is at location u is

Dv(u) = Prob

"
nX
i=1

K

jju� sijjk
+Ni � �

#

= Prob

"
nX
i=1

Ni � � �

nX
i=1

K

jju� sijjk

#
;

where � is the value fusion threshold. If the noise processes
at the sensors are independent, then the probability density
function of

Pn

i=1Ni equals the convolution of the probabil-
ity density function of Ni, i = 1; : : : ; n. In particular, if
the noise process at each sensor is Additive White Gaussian
Noise (AWGN), then

Pn

i=1Ni has a Chi-square distribution
of degree n.
Due to the presence of noise, the sensors may incorrectly

decide that a target is present even though there is no tar-
get in the �eld. The probability of a consensus false target
detection is

Fv = Prob

"
nX
i=1

Ni � �

#
: (2)

As above, if the noise processes at the sensors are indepen-
dent and AWGN, then the false alarm probability can be
computed from the Chi-square distribution of degree n.

2.1.2 Decision Fusion.
For decision fusion, the probability of consensus target

detection when the target is located at u is

Dd(u) = Prob

"
nX
i=1

hd;i(u) � �2

#

=
nX

j=�2

�
n
j

�
� P1

j � P0
(n�j)

where

P1 = Prob [hd;i(u) = 1]

= Prob

�
Ni � �1 �

K

jju� sijjk

�
and

P0 = Prob [hd;i(u) = 0]

= 1� Prob [hd;i(u) = 1] :

can be computed from Chi-square distribution of degree 1
for AWGN noise process.
The probability of false target detection at sensor i is

Prob[gd;i = 1] = Prob[Ni � �1] and

Prob[gd;i = 0] = 1� Prob[gd;i = 1]:

Therefore, the probability of consensus false target detection
is

Fd = Prob

"
nX
i=1

gd;i � �2

#

=
nX

j=�2

�
n
j

�
� (Prob [gd;i = 1])j � (Prob [gd;i = 0])(n�j)

The above equations serve as an analytic basis for evalu-
ating exposure as de�ned in the following subsection.
Note that in value and decision fusion the knowledge of the

sensors location can be used to make the detection decision.
For example, a sensor can report values that di�er substan-
tially from its neighbors values. This discrepancy can be
analyzed to avoid false alarms or misses and therefore im-
prove the detection performance. However, such algorithms
are not considered in this paper.

2.2 Definition of exposure
We de�ne exposure to be the probability of detecting the

target or an intruder carrying out the unauthorized activity,
where the activity depends on the problem under consider-
ation. In this paper, the activity considered is the Unautho-
rized Traversal (UT) as de�ned below.
Unauthorized Traversal (UT) Problem: We are given
a sensor �eld with n sensors at locations s1, s2, : : : , sn (see
Figure 1). We are also given the stochastic characterization
of the noise at each sensor and a tolerable bound, �, on the
false alarm probability. Let P denote a path from the west to
the east periphery of the sensor �eld. A target traversing the
sensor �eld using path P is detected if it is detected at some
point u 2 P . The exposure of path P is the net probability
of detecting a target that traverses the �eld using P . The
target is assumed to be able to follow any path through the
�eld and the problem is to �nd the path P with the least
exposure.
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Sensor

Figure 1: Example sensor �elds for UT problem.

2.3 Solution to the UT problem
Let P denote a path from the west to the east periph-

ery through the sensor �eld. A target that traverses the
�eld using P is not detected if and only if it is not detected
at any time while it is on that path. Since detection at-
tempts by the sensor network occur at a �xed frequency, we
can associate each detection attempt with a point u 2 P
when assuming that the target traverses the �eld at a con-
stant speed. The detection attempts are based on energy
measured over a period of time T during which the target
is moving. Therefore, the detection probability associated
with each point u reects the measurements performed dur-
ing time T . Considering the path, the net probability of not
detecting a target traversing the �eld using P is the prod-
uct of the probabilities of no detection at each point u 2 P .
That is, if G(P ) denotes the net probability of not detecting
a target as it traverses over path P , then,

logG(P ) =
X
u2P

log(1 �D(u))du;

where D(u) is either Dv(u) of Dd(u) depending on whether
the sensors use value or decision fusion to arrive at a con-
sensus decision. Since the exposure of P is (1� G(P )), the
problem is to �nd the path which minimizes (1� G(P )) or
equivalently the path that minimizes j logG(P )j1.
In general, the path P that minimizes j logG(P )j can be

fairly arbitrary in shape. The proposed solution does not
exactly compute this path. Instead, we rely on the following
approximation. We �rst divide the sensor �eld into a �ne
grid and then assume that the target only moves along this
grid. The problem then is to �nd the path P on this grid
that minimizes j logG(P )j. Note that, the �ner the grid the
closer the approximation. Also, one can use higher order
grids such as in [5] instead of the rectangular grid we use
in this paper. The higher order grids change the runtime
of the algorithm but the approach is the same as with the
rectangular grid.
For the target not to be detected at any point u 2 P ,

1Note that, G(P ) lies between 0 and 1 and thus logG(P ) is
negative.

1. Generate a suitably �ne rectangular grid.
2. For each line segment l between adjacent grid points
3. Compute j logmlj using Equation 3
4. Assign l a weight equal to j logmlj
5. Endfor
6. Add a link from virtual point a to each grid point on

the west
7. Add a link from virtual point b to each grid point on

the east
8. Assign a weight of 0 to all the line segments from a

and b
9. Compute the least weight path P from a to b using

Dijkstra's algorithm
10. Let w equal the total weight of P .
11. Return P as the least exposure path with an

exposure equal to 10�w.

Figure 2: Pseudo-code of the proposed solution for
the UT problem.

it need not be detected at any point u lying between any
two adjacent grid points of P . We therefore subdivide any
path P as a chain of grid segments. Let us consider two
adjacent points, say v1 and v2 on the grid. Let l denote
the line segment between v1 and v2. Also, let ml denote
the probability of not detecting a target traveling between
v1 and v2 on the line segment l. Then, from the discussion
above,

logml =
X
u2l

log(1�D(u))du (3)

The probability ml can be evaluated by �nding the detection
probability D(u) at each point u 2 l. Note that, ml lies
between 0 and 1 and, therefore, logml is negative.
To �nd the least exposed path, a non-negative weight

equal to j logmlj is assigned to each segment l on this grid.
Also, a �ctitious point a is created and a line segment is
added from a to each grid point on the west periphery of
the sensor �eld. A weight equal to 0 is assigned to each of
these line segments. Similarly, a �ctitious point b is created
and a line segment is added from b to each grid point on
the east periphery of the sensor �eld. A weight equal to 0
is assigned to each of these line segments.
The problem of �nding the least exposed path from west

periphery to east periphery is then equivalent to the problem
of �nding the least weight path from a to b on this grid. Such
a path can be e�ciently determined using the Dijkstra's
shortest path algorithm [1]. A pseudo-code of the overall
algorithm is shown in Figure 2.

Example: Figure 3 shows a sensor �eld with eight sensors
at locations marked by dark circles. Assume the noise pro-
cess at each sensor is Additive White Gaussian with mean
0 and variance 1. Further assume that the sensors use value
fusion to arrive at a consensus decision. Then, from Equa-
tion 2, we chose a threshold � = 3:0 to achieve a false alarm
probability of 0.187%. The �eld has been divided into a
10 � 10 grid. The target emits an energy K = 12 and the
energy decay factor is 2. The �gure shows the weight as-
signed to each line segment in the grid as described above.
The least exposure path found by the Dijkstra's algorithm
for this weighted grid is highlighted. The probability of de-

44



Fictitious Fictitious
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Figure 3: Illustration of the proposed solution for an example UT problem.

tecting the target traversing the �eld using the highlighted
path is 0.926.

3. DEPLOYMENT
In this section, the problem of sensor deployment for unau-

thorized traversal detection is formulated and solutions are
identi�ed.

3.1 Problem formulation
Consider a region to be monitored for unauthorized traver-

sal using a sensor network. The target to traverse the sensor
�eld emits a given energy level K and the stochastic of the
noise in the region is known. The sensors are to be deployed
over the region in a random fashion where the sensors loca-
tions in the region are a priori undetermined and only the
number or density of sensors can be chosen. The problem is
to �nd a deployment strategy that results in a desired per-
formance level in unauthorized traversal monitoring of the
region.
This performance is measured by the false alarm proba-

bility and the path exposure de�ned in section 2. The false
alarm probability does not depend on the sensor placement
and is only determined by the number of sensors deployed
and the thresholds used in the detection algorithms. It is as-
sumed to be �xed in this study so that the problem consists
of maximizing the exposure at constant false alarm rate.
Since targets can traverse the region through any path, the
goal of deployment is to maximize the exposure of the least
exposed path in the region.
Obviously, the minimum exposure in the region increases

(if false alarm rate is kept constant) as more sensors are
deployed in the region. However, since the deployment is
random, there are no guarantees that the desired exposure
level is achieved for a given number of sensors. Indeed some
sensor placements can result in very poor detection ability,
in particular when the sensors are all deployed in the same
vicinity. A study of the statistical distribution of exposure
for varying sensor placement for a given number of sensors

can provide a con�dence level that the desired detection level
is achieved. In practical situations, only a limited number
of sensors are available for deployment and only a limited
detection level with associated con�dence level is achievable
at a given false alarm rate.

3.2 Solution
Based on the above discussion, we develop a solution method

to the deployment problem when a maximum of M sensors
can be used. Deploying the M sensors results in the max-
imum achievable detection level but is not optimal when
considering the cost of sensors. To reduce the number of
sensors deployed, only part of the available sensors can be
deployed �rst and the sensors can then report their position.
The random sensor placement obtained can be analyzed to
determine if it satis�es the desired performance level. If it
does not, additional sensors can be deployed until the de-
sired exposure level is reached or until the all M available
sensors are deployed.
The number of sensors used in this strategy can be mini-

mized by deploying one sensor at a time. However, a cost is
usually associated with each deployment of sensors and de-
ploying one sensor at a time may not be cost e�ective if the
cost of deployment is su�ciently large with respect to the
cost of single sensors. By assigning a cost to both single sen-
sors and deployment, the optimal number of sensors to be
deployed at �rst and thereafter can be determined. In the
next section, we develop analytical expressions for �nding
the optimal solution. In general, the optimal cost solution
is neither deploying one sensor at a time nor deploying all
the sensors at a time.

4. ANALYTICAL SOLUTION
In this section, we derive an analytical model for the cost

of deployment. Let ed be the desired minimum exposure for
the sensor network to be deployed when a maximum of M
sensors are available for deployment. The position of sensors
are random in the region of interest R and for a given num-
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Figure 4: Probability density function for the dis-
tribution of minimum exposure for deployments of
5, 10 and 15 sensors.

ber of sensors n, the least exposure e is a random variable.
Let Fn(x) denote the cumulative distribution function of e,
that is the probability that e is less than x, when n sensors
are deployed.
As mentioned in the previous section, there is no a priori

guarantee that the exposure ed will be obtained when de-
ploying the sensors. IfM is the maximum number of sensors
available, the con�dence of obtaining a least exposure of ed
or more is 1�FM(ed). For the proposed solution, we assume
that the position of the sensors obtained after a deployment
is known so that additional sensors can be deployed if the
minimum exposure ed is not reached. To evaluate the proba-
bility that the exposure ed is reached after additional sensor
deployment, we make the following approximation: the dis-
tribution of exposure for n sensors is independent of the ex-
posure corresponding to k of these n sensors, 1 � k � n� 1.
This is an approximation since the exposure obtained with
n sensors is always higher than the exposure obtained with
only k of these n sensors, 1 � k � n � 1. We observed
that the re-deployment of just a few sensors can substan-
tially modify the coverage of the region, for example when
�lling empty spaces. The approximation is also justi�ed by
the loose relation between exposure and sensors positions.
Indeed, a given minimum exposure can correspond to many
di�erent deployment positions, some of which can be easily
improved by deploying a few additional sensors (e.g. when
there is a empty space in the region coverage), some of which
can only be improved by deploying many additional sensors
(e.g. when the sensors are evenly distributed on the region).
As the minimum exposure e is a random variable, the cost

of deploying the sensors in steps until the desired exposure
is reached is also a random variable C. We now derive the
expression for the expected value of C. Let ni be the total
number of sensors deployed after each step i for a maximum
number of steps S so that nS = M . Note that ni � ni�1
is the number of sensors deployed at step i. Also let Cd be
the cost of deploying the sensors at each step and Cs be the
cost of each sensor. If the desired exposure is obtained after
the �rst step, the cost of deployment is Cd +n1Cs, and this
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Figure 5: Probability that the minimum expo-
sure is above ed for varying number of sensors and
ed=80%,85%,90% and 95%.

event happens with probability 1�Fn1(ed). Considering all
the possible events, the expected cost is given by

EfCg =
S�1X
i=1

(i:Cd + ni:Cs)

 
i�1Y
j=1

Fnj (ed)

!
(1� Fni(ed))

+ (S:Cd +M:Cs)
S�1Y
j=1

Fnj (ed) (4)

Note that a di�erent expression is needed for the cost of
step S since no additional sensors are deployed after this
step even when the desired exposure is not obtained.

5. SIMULATION
In this section, we present results of simulations that were

conducted to collect the exposure distribution function of
the number of sensors deployed.

5.1 Method
The exposure distribution is obtained by collecting statis-

tics on the exposure when deploying sensors randomly in a
prede�ned region. The random deployment is assumed to
be uniformly distributed over the region, which is a local ap-
proximation. For every deployment, the minimum exposure
is found using a simulator implementing the algorithm pre-
sented in section 2. A decay factor of k = 2 and maximum
energy of K = 60 are chosen to model the energy emitted
by targets (cf Equation 1). The region monitored is of size
20�20 with a noise (AWGN) of variance 1, so that the signal
coming from the target is covered by noise when the target is
8 or more units length away from a sensor. The sensors use
value fusion to collaborate when making a common decision
on the presence of a target in the region. The threshold for
detection is chosen as a function of the number of sensors
to give a constant false alarm probability. The false alarm
probability for each detection attempt is chosen so that the
probability to get one or more false alarm along a path of
length 20 units (corresponding to 20 detection attempts by
the sensors) is 5%.
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Figure 6: Expected cost of achieving minimum exposure of 95% as function of the number of sensors for
three di�erent cost assignments.

5.2 Distribution of minimum exposure
The distribution of minimum exposure were found for the

number of sensor deployed varying from 1 to 40. To illus-
trate our results, the probability density functions for 5, 10
and 15 sensors are shown in Figure 4.
We observe that for 5 sensors deployed, the minimum ex-

posure has zero density for values less than the false alarm
probability of .04. The highest density is obtained for val-
ues around .07 and then drops exponentially towards zero
for higher values of exposure. For deployment of 10 sensors,
we �nd again that the minimum exposure has zero density
for values below .04, then increases and has about constant
density for values lying between .1 and .98. We also observe
a peak of density around 1. For deployment of 15 sensors,
densities start at zero for small values and remain very small
for most values of minimum exposure. The density slowly
increases and has a large peak for minimum exposure of 1.
As expected, the minimum exposure increases on average

as the number of sensors deployed increases. When ran-
domly deploying 5 sensors, it is very unlikely to obtain a
placement providing a desirable minimum exposure. When
deploying 10 sensors, most of the exposure levels are equally
likely and only poor con�dence is given to obtain a desir-
able exposure level. When deploying 15 sensors, it is very
likely that the sensor placement will give good exposure and
this likelihood keeps increasing with the number of sensors
deployed.
We use the cumulative distribution function obtained from

the statistics collected to evaluate the likelihood that the de-
sired level of exposure ed is obtained for varying number of
sensors. The graph of Figure 5 shows the probability that
the minimum exposure is above ed as a function of the num-
ber of sensors deployed for ed = 80%; 85%; 90% and 95%.
These values can be used to evaluate the cost expressed in

Equation 4. The graph shows that the con�dence level to
obtain a given minimum exposure level ed increases with the
number of sensors deployed. The con�dence for ed when de-
ploying 40 sensors is above .999, which is su�cient for most
applications, and therefore we did not evaluate the distribu-
tion of exposure when deploying more than 40 sensors.

6. RESULTS
In this section, we evaluate the expected cost of deploying

sensors using the simulation results. The optimal number
of sensor to deploy at �rst and in the succeeding steps can
be derived from these results.
For this cost analysis, the region parameters and signal

model are the same as speci�ed in section 5. We further
assume that the number of sensors deployed at every step
is constant so that ni � ni�1 = n for all 1 � i � S. In this
case, Equation 4 reduces to

EfCg = (Cd + n:Cs)
S�1X
i=1

i:

 
i�1Y
j=1

Fj:n(ed)

!
(1� Fi:n(ed))

+ (S:Cd +M:Cs)
S�1Y
j=1

Fj:n(ed) (5)

We evaluated the expected cost as a function of n for
three di�erent cost assignments with a desired exposure of
ed = 95%. The three corresponding graphs are shown in
Figure 6. The �rst cost assignment is (Cd = 0; Cs = 1) so
that the expected cost is the expected number of sensors to
be used to achieve an exposure of 95%. Since Cd = 0, the
number of steps used to deploy the sensors doesn't a�ect the
cost and it is therefore optimal to deploy one sensor at a time
until the minimum exposure ed is reached, as we observe on
the graph. Overall, the expected number of sensor to be
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deployed increases with n but we observe a local minimum
for n = 16 that can be explained by the following analysis.
The expected number of sensors is a weighted sum of i:n; 1 �
i � S that are the di�erent number of sensors than can
be deployed at a time when deploying n sensors at each
step. For n around 16, the probability that the minimum
exposure is above ed varies a lot as shown in Figure 5 and the
weight associated with the �rst term of the sum (n) increases
rapidly while the weights associated with higher number of
sensors decrease. This is the cause of the local minimum
and the cost starts to increase again when the increase in n
compensates for the decrease in weights.
The second cost assignment is (Cd = 5; Cs = 1) so that

the cost of a deployment is equal to the cost of �ve sensors
(note that only the relative cost of Cd=Cs determines the
shape of the graphs). In this case, deploying one sensor at a
time is prohibited by the cost of deployment and the optimal
number of sensors to deploy at every step is 19. Again, we
�nd that the curve presents a local minimum for n = 9 that
is due to the variations in weights. The last cost assignment
is (Cd = 100; Cs = 1) and the minimum cost is achieved
when deploying 27 sensors at every step.
These results are speci�c to the region and the parameters

characterizing the signal emitted by the target that were
chosen for the simulation. Similar results can be derived for
other parameters, most of the e�ort residing in �nding the
exposure distributions through simulation.

7. CONCLUSION
This paper addresses the problem of sensor deployment

in a region to be monitored for target intrusion. A mech-
anism for sensor collaboration to perform target detection
is proposed and analyzed to evaluate the exposure of paths
through the region. The minimum exposure is used as a
measure of the goodness of deployment, the goal being to
maximize the exposure of the least exposed path in the re-
gion.
In the case where sensors are randomly placed in a region

to be monitored, a mechanism for sequential deployment in
steps is developed. The strategy consists of deploying a lim-
ited number of sensors at a time until the desired minimum
exposure is achieved. The cost function used in this study
depends on the number of sensors deployed in each step and
the cost of each deployment. Through simulation, the dis-
tribution of minimum exposure obtained by random deploy-
ment was evaluated for varying number of sensors deployed.
These results were used to evaluate the cost of deployment
for varying number of sensors deployed in each step.
We found that the optimal number of sensors deployed in

each step varies with the relative cost assigned to deploy-
ment and sensors. The results of this study can be extended
to larger regions with di�erent target parameters. The so-
lution proposed in this paper can also be improved by con-
sidering deploying variable number of sensors at each step
and this multiple variables problem requires further investi-
gation.
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