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Abstract— Collaborative source localization in the wireless sen-  In this paper, we presented a novel approach to estimate the
sor network is presented. This new approach uses multi-modality source location based on the received signal power (energy)
energy-based constant false alarmQFAR) node detection and o gifferent sensor modality (acoustic, seismic, PIR) in the

multi-modality region detection to detect the targets first and irel twork t Th field is divided
then uses acoustic energy based localizatiorEBL) algorithm WIreless sensor network system. € sensor field Is diviae

to further locate the target in the detected region. Experiments iNto several smaller regions. Each region, there is a manager
are conducted. Results show that this new approach is accurate sensor node. Other nodes are detection nodes. The targets are

and robust. Besides, it needs less communication bandwidth and detected by multi-modality energy-baseBARnode detection
consumes less computation energy. Therefore, it is favorable in (by detection nodes) and multi-modality region detection (by
the wireless sensor network system. . . .
manager node). Once region detection announces the detection
|. INTRODUCTION of the target, acoustic energy based localizatiBBLl) algo-

The emergence of small, low-power devices that integratéhm is activated and performed to further locate the targets
micro-sensing and actuation with on-board processing aimdthe activated region.
wireless communication capabilities stimulates great interestdExperiments were conducted to evaluate this collaborative
in wireless distributed sensor network. Such distributed senssurce localization in wireless sensor network system. Results
network systems have a variety of applications [1], [2]. Exshow that this new approach is robust and accurate most of
amples include underwater acoustics, battlefield surveillanéi#e. And it need low bandwidth and low computation burden.
electronic warfare, geophysics, seismic remote sensing, and his paper is organized as follows: In section I, collabo-
environmental monitoring. Such sensor networks are oftéative multi-modality node detection and region detection is
designed to perform tasks such as detection, classificatidescribed. In section Ill, we will derive the energy based
localization and tracking of one or more targets in the sensgpurce localization algorithm. Experiments are provided in
field. The sensors are typically battery-powered and have ligection IV. A conclusion is given is section V.
ited Wirelgss qommunicatior) bandwigith. Therefore, efficient”' COLLABORATIVE SOURCE DETECTION INWIRELESS
collaborative signal processing algorithms that consume less SENSORNETWORK
energy for computation and communication are needed. ) ) ] ) ]

An important collaborative signal-processing task is sourée Multi-modality node detection and region detection
localization using a passive and stationary sensor network. Thd he sensor field is divided into several smaller region. Each
objective is to estimate the positions of the moving targetegion, we define one manager sensor node. Other nodes are
within a sensor field monitored by the sensor network. defined as the detection nodes.

Most localization methods depend on three types of physicalThe region is activated by our tracking algorithm imple-
variables measured by or derived from sensor readings faented by Kalman filter, which uses the previous localization
localization: time delay of arrival (TDOA), direction of arrivalresults to predict the target location in the next time period.
(DOA) and received sensor signal strength or power. DOWhen it predicts that the targets will go into another region,
can be estimated by exploiting the phase difference measutied current region manager node will send this information to
at receiving sensors [3], [4],[5] and is applicable in the caske manager node of that region. The corresponding region
of a coherent, narrow band source. TDOA is suitable fis then activated. Each detection node in the activated region
broadband source and has been extensively investigated §@Jculates the average energy in every time-period for different
[71, [8]. In practice, DOA measurement typically require costlynodality. And then, each detection node performs energy-
antenna array on each node. The TDOA techniques requi@sedCFARdetection and calculates the noise mean and noise
a high demand on the accurate measurement or estimatianiance for different modality. Detection node then reports the
of time delay. In contrast, received sensor signal strengthbimary detection results (0 or 1) for each modality as well as
comparatively much easier and less costly to obtain from theoustic energy, noise mean and noise variance to the manager
time series recordings from each sensor. node in every time period. For example, suppose we have



three modality, say, acoustic, seismic and PIR. Now, region 1ll. ACOUSTICENERGY BASED SOURCEL OCALIZATION

is activated currently. At the most recent time period, using | [9], we derived that, when the sound propagates in the
CFAR detector, node i dgtects the Farget with acoustic energge and homogenous space and the targets are pre-detected to
and PIR energy respectively. But it doesn't detect the targed in a certain region of the sensor field, the acoustic energy

with seismic energy in this period. It then reports 101’ as WeHecay function can be modelled by the following equation:
as average acoustic energy, noise mean and variance in this

period to the manager node. Manager node performs multi- % S.(n)
modality region detfs:ctlon algorithm to detect the targets. ylg(n) = ysi(n) + £5(n) = giz J S +ein) (@)
performs as follows: | pj(n) —r;|

The manager node first uses majority voting to get the . . .
detection result for each modality. For example, in region LWhereK Is the number of targets detected in the region.

if there are more than N/2 nodes report the acoustic detectigh(,:;]) |str:he acousftlfhengrgy regewed by ﬂﬁétstegs]?rysi(n) h of
where N is the number of detection node in region 1, gfg (e the sum of the decayed energy emitted lrom each o

-th . )
manager node judges that the acoustic modality detection} ?SEK targets to¢™ sensor (i.e. energy sources)(n)

its region is 1. So does seismic modality detection. PIR sen %rak pertu(rjba(t;g_rtl_ term_ that gutrr?manzes ';he ne(’; (Ielffects of
is special, manager node announces PIR detection if ther ground additve noise and the parameter modelling error.

more than 1 PIR detection. After that, manager node u -Sand Ti dare the gain factotr_ a?d tlrc:catlon of th@'ttsfjnior'th
different weights for different modality to fuse the detectio ,gh(n) and p, (n) are respectively, the energy emitted by the
source (measured dt meter from the source) and its

results of each modality. If the fusion result announces thl%lt tion durinan®® time int L Th ber of in th
targets are in the region, acouskE®8L algorithm is activated ocation during: = ime Interval. 1ne nUmDber of Sensars In the
- -ﬁgtlvated region is assumed to B& the location dimension

ssumed to be. n is thent” time interval.

n [9], we analyzed the probability distribution ef(n) and
concluded that it can be modelled well with an independently,
B. Energy-Base@FAR Detector identically distributed Gaussian random variable when the time

jndow 7" for averaging the energy is sufficiently large, i.e,
T > 40/ fs, where f, is the sampling frequency. The mean
and variance of each (n), denoted byu;(n) (> 0) ando?(n),
can be empirically estimated from o@FARdetector that we
ggscribed previously.

To simplify our notation, in the following parts, we will not
H%noten explicitly in our equation. All parameters refer to the
me time window automatically, i.e., we dengtefor y;(n).

the most recent reported acoustic energy, noise mean
variance from its detection nodes.

Previously, we described that node detection used ener
basedCFAR detector to detect targets for each modality. Th
section, we will introduce the algorithm for thizFARdetector.

Briefly, the CFAR detector proceeds as follows. & time
series was taken at the beginning of the experiment to initiali
the meanpu(0) and standard deviation,(0) of the noise
energy, assuming no presence of target during this period. T
is known as the noise level initialization phase. Then ealh
nodek goes to the detection phase where the engigy) is A. Maximum LikelihoodNIL) Estimation forEBL problem
compared to a thresholfl;(n) at time n. Assuming the noise  peafine
energy sequence is independent Gaussian, we can dgfing
asTi(n) = pr(n) + Cok(n), whereC' is a constant chosen
to yield a desired constant false alarm probability:

— — — r
7 = [ ylolﬂl y202M2 L yNUNMN ] (2)

Equation(1) can be simplified as:

1 > 1
Ppjg= —— exp(—=u?)du Z = GDS+¢ = HS+¢ (3)
FA ﬁ(QW)/c p( 2 )
The decisiom/(n) then i Where:
e decisiony(n) then is
S=[S S ---Sk]" 4
() = { 1 yr(n) > Ti(n)
0 yr(n) <Tk(n) H=GD (5)
where y(n) = 1 indicates the target presence and 0 _ o o .
for target absence. If(n) = 1, then the threshold keeps G=diag[ & £ ... 2] (6)
unchangedTy(n) = Tx(n — 1); otherwise, it is updated as
follows: & . 3
i (n) = app(n — 1) + (1 - a)yi(n) p_| & & T e
ai(n) = acg(n — 1) + (1 — a)[yk(n) — p(n)]? i 1 i
d,  dih, T Rk

T = -1 +C
k() = i (n )+ Cow(n) di; = |pj —r;| is the Euclidean distance between e

where« is a "'memory factor” between 0 and 1. sensor and thg!" source.



€ =166 ...&n]T, whereg; is independent Gaussian noiséVe can further reduce the number of search times by reducing

~ N(0,1) our search region based on the previous location estimation,
The unknown parameteg in the above function is: the time interval between two localization operation, possible
S T T vehicle speed and estimation error. In our experiment, all these
O=[pl P2 - Pk S1 S .- Sk | conditions are used. The search area we used fqrtijection
The log-likelihood function of abov&BL problem is: solution is(z; —32, x;+32) X (y; — 32, y; +32), where(z;, y;)
1 is the previous estimation location of tti& target. Therefore,
00) == 5 | Z - GDS |? (8) for single target, we need onB4 search; for two targets, we

_ o ) ~ need288 search for every localization estimation, which is
Given the log-likelihood functiorf(9) denoted as equation feasiple for our distributed wireless networking system.
(8), ML estimations of the parameteésare the values that
maximizeg(g), or equivajenﬂy, minimize B. Nonlinear Least Squared(_S) Estimation for Single Target

Lio 7 GDS II? Localization
©) =2z~ | When there is only one target in the region, by ignoring the
Equation (9) had<(p+ 1) unknown parameters, there musadditive noise terna; in the equation (1), we can compute the
be at least'(p-+1) or more sensors reporting acoustic energgnergy ratiop;; of the it and thej'* sensors as follows:

readings to yield an unique solution to this nonlinear least

~1/2
square problem. Gij = (yi/yj) _ | p—ri (15)
Define pseudoinverse df asH, projection matrix ofH 9i/9; [ p—rj|l
asPy, and perform reduced SVD df, we have: Here p denotes the single target location. Other parameters
Hf — (HTH)fl a7 (10) € the same as what described before.

Note that by sorting the calibrated energy readipg&;,
for 0 < ¢;; # 1, all the possible source coordinatpsthat

Py = H(H"H) "H" = Uy Uy (11 satisfy equation (15) reside on a p-dimensional hyper-sphere
T described by the equation:
H=GD=UyXyVy (12) .
Set 2% = 0, we have: e —ei 7= G (16)
S_H'7Z (13) Where the centet;; and the radius;; of this hyper-sphere
- associated with sensor i and j are given by:

Insert (13) into the cost function (9), we get modified cost i — o2 T
. ) R 7 (pv,] J ”_Sﬁzy ”rz I'] ||
function as follows: s Gij = o2 = 17)
17 17
_ T T
argMIN L = arg MIN (Z"(I - Pp)" (I-Pp)Z) If ¢;; = 1, the solution of equation (15) form a hyper-plane
{p1.p2,--Pr} {p1.p2,--.pk} betweenr; andr;, i.e.:
= argMAX (Z"P}Z) = argMAX Z"U,ULZ (14) p(t)tij = Tij (18)
N—— S—— R 5
{p1,p2,..-pr} {p1,p2,--pk} Wheree;; =r; —rj, Tij = fril”—Jr; |” g‘ri\
For single sourcej =1, So far, we show that, for single target at noiseless situation,
T each energy ratio dictates that the potential target location must
H- |- & o 92 S In , be on a hyper-sphere or a hyper-plane within the sensor field.
o1di oyd; o d, With noise taken into account, the target location is solved
H as the position that is closest to all the hyper-spheres and
Un = | H | hyper-planes formed by all energy ratios in the least square

. ._sense, i.e., the single target location is solved by minimizin
Exhaustive search can be used to get the source Iocatloqﬁg following cost flg,lnctiorg\]' y 9

maximize function (14). However, the computation complexity

is very high. For example, suppose our detected search region Ly ) Lo - 9
is 128 x 128, if we useexhaustivesearch using the grid size J(p) = Z (lp—enl =)™+ Z (1,0 — 71, (19)
of 4 x 4, we needl 024X times of search for every estimation h=1 =1,

point, whereK is the number of the targets. Rather, we can Where L, + L, = L, L is the pairs of energy ratios can
use Multi-Resolution MIR) search to reduce the number obe computed in our sensor field, and i, are indices of
search times. For example, we can use the search gridGize the energy ratios computed between different pairs of sensor
16, 8 x 8, 4 x 4 sequentially. Then, the number of search timesnergy readingsl; and L, are the number of hyper-spheres
is reduced t&4% 2«4 . For two targets, it needs 28 search and the number of hyper-planes respectively.

times usingMR search with this search strategy ahoR4? Again, exhaustive searclMR search can be used to solve
search times usingxhaustivesearch to get one estimationthis NLS estimation.



= 90%, specifity = 81%.
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Fig. 1.  sensor deployment, road coordinate and region specification for Fig. 2. Multi-modality region detection for region 1 (AAV)
experiments

IV. EXPERIMENTS

The raw signals were recorded by 29 sensor nodes deployed
along the road in the sensor field, CA in November 2001,
sponsored by the DARPA ITO SensIT project. Each sensor
node is composed of a palm with wireless ratio link, an 8
acoustic sensor, a seismic sensor, a PIR sensor and three s
coaxial cables which connect the sensors to the palm. The
data we used to evaluate our collaborative source localization
algorithms were taken from 15 sensor nodes recording the
acoustic, PIR and seismic signatures of AAV vehicle going Fig. 3. Multi-modality region detection for region 2 (AAV)
from east to west during a time period of 2 minutes. Figure
1 shows the road coordinates and sensor node positions, both

supplied by the global positioning system (GPS). The sensginounces the target detection. Sensitivity is detection rate
field is divided into two regions as shown in the above figurgshen the targets are in the region. We also compute the
Region 1 is composed of nodg 41,42,46,48,49,50,51. |ocalization errors defined as the Euclidian distance between
Region 2 is composed of nod&, 53,54,55,56,58,59. In  the |ocation estimates and the true target locations for all time
region 1, node 1 is chosen as manager node, others g@&ant when region detection is announced. The true target
detection node. In region 2, node 58 is chosen as managgfation can be determined since they must be positioned on
node, others are detection node. The sampling rate is fstie target trajectory which can be extracted from GPS log.
4960Hz. The energy is computed by averaging the T=0.75sggese localization errors are then grouped into different error
non-overlapping data segment (3720 data points). range, i.e.0 ~ 10,10 ~ 20, ...40 ~ 50,> 50. We call it as
Fig. 2 and Fig. 3 show the multi-modality node detectioBrror histogram of our localization algorithm. Fig. 5 shows

results for acoustic, seismic and PIR modality and the multhis |ocalization error histogram for AAV localization.

modality region detection results. The constahtve choose  Raw acoustic, seismic and PIR signatures were also

for the CFARdetector are = [3.5, 5, 10] for acoustic, seismic rocorded for DW vehicle in the experiments. Using the same

and PIR respectivelyx = 0.99 for all of the three modality gensor network system and collaborative source localization
CFAR detector. The weights we used for the region fusion

decision of the acoustic modality, seismic modality and PIR

modality are 0.3, 0.5, 0.2 respectively. If the region fusion e
result is bigger than or equal to 0.5, manager node announces
the target.

Fig. 4 shows the AAV ground truth and the localization
results based on thdL algorithm with projection solution and .
NLSalgorithm.MR search is used to estimate the location. The
grid size we chose is: 4*4, 2*2, 1*1. Note that the missing ’
ground-truth points in this figure are the miss-detection points
by our multi-modality detector and therefore, there is no
localization operation at these points. * s *

To evaluate this collaborative source localization algorithms, o o
we define the Specifty and sensitviy parameters to indicd, £ A 00urc i and ocalzaton estmetr esuls basedin,
the performance of region detection. Specifity is the rate whigle is 4*4, 2*2 and 1*1. Estimation results look bias from the ground-truth,
denotes the correct announcement percentage when the regg@rliscussion for reasoning)

80 100
steps, 1 step stands for 0.75 sec




histogram

NLS doesn’t use noise variance for its estimation whié

] algorithm does need it. So, fdiLS algorithm, we save about
1/4 bandwidth. (FoML estimation, detection nodes need to
report acoustic energy, noise mean, noise variance and multi-
modality binary node detection results in every 0.75 second).
] Fig. 4 and Fig. 6 show that the localization estimation
results look bias from the real ground-truth. This might be
caused by uncorrected GPS position reports, un-calibrated
sensor gain, incorrect background noise estimation or some
individual sensor fault measurements. It can be seen that both
AAV and DW ground truth also look bias from the road while

in the experiment, they moved along the road. We can also see
that estimation results are closer and less biased to the road
than to the ground-truth.

number of estimation points within the cor

Fig. 5. Estimation error histogram for AAV experiment data

experiment for dw single target localization

V. CONCLUSION

Collaborative energy-based source localization method has
been presented. Experiments show that this new approach is
robust and accurate most of time. Besides, this new approach
needs low communication bandwidth since the algorithm is
activated only the region is activated. In addition, each sensor
only reports energy reading, noise mean and variande§
doesn’t need variance), and detection binary results to the
Fig. 6. DW ground truth and localization estimation results basetion Manager node at every time period rather than at every time in-
algorithm with projection solution andiLS algorithm (MR search is used, stant. Besides, it is power efficient. For detection node, it only
search grid size is 4*4, 2*2 and 1*1. Estimation results look bias from tl*ea|cu|ates the average energy in the time period and performs
ground-truth, see discussion for reasoning) . .

energy-base@€FAR detector (simple algorithm). For manager
node, it performs simple voting algorithm and decision fusion
algorithms, we get the localization results and Iocalizatioﬂgr?mhm: Ma;ager_node performs I(r)]callzataz-algqnthm only
error histogram for DW data. They are shown in Fig. 6 an .t € region etcho_n announces the targ estimation
Fig. 7. with projection solution andMR search under the reduced
. — . . search region saves the computation burden and so, saves the
1) discussion:From experiment, we can see that this N hanager node battery further more. Detection node ener
collaborative source localization algorithm is robust and accu- ger. Atery X g gy
. i L cogmputation requires averaging of instantaneous power over
rate most of time. The specifity and sensitivity parameters afe : : . o )
! . L a pre-defined time interval. Hence it is less susceptible to
high. BothML and NLS algorithms perform well estimations : : .
. : t;P]arameter perturbations, and so, the algorithm is robust.
of target location when the targets are detected to be in the
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