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Abstract— Collaborative source localization in the wireless sen-
sor network is presented. This new approach uses multi-modality
energy-based constant false alarm (CFAR) node detection and
multi-modality region detection to detect the targets first and
then uses acoustic energy based localization (EBL) algorithm
to further locate the target in the detected region. Experiments
are conducted. Results show that this new approach is accurate
and robust. Besides, it needs less communication bandwidth and
consumes less computation energy. Therefore, it is favorable in
the wireless sensor network system.

I. I NTRODUCTION

The emergence of small, low-power devices that integrate
micro-sensing and actuation with on-board processing and
wireless communication capabilities stimulates great interests
in wireless distributed sensor network. Such distributed sensor
network systems have a variety of applications [1], [2]. Ex-
amples include underwater acoustics, battlefield surveillance,
electronic warfare, geophysics, seismic remote sensing, and
environmental monitoring. Such sensor networks are often
designed to perform tasks such as detection, classification,
localization and tracking of one or more targets in the sensor
field. The sensors are typically battery-powered and have lim-
ited wireless communication bandwidth. Therefore, efficient
collaborative signal processing algorithms that consume less
energy for computation and communication are needed.

An important collaborative signal-processing task is source
localization using a passive and stationary sensor network. The
objective is to estimate the positions of the moving targets
within a sensor field monitored by the sensor network.

Most localization methods depend on three types of physical
variables measured by or derived from sensor readings for
localization: time delay of arrival (TDOA), direction of arrival
(DOA) and received sensor signal strength or power. DOA
can be estimated by exploiting the phase difference measured
at receiving sensors [3], [4],[5] and is applicable in the case
of a coherent, narrow band source. TDOA is suitable for
broadband source and has been extensively investigated [6],
[7], [8]. In practice, DOA measurement typically require costly
antenna array on each node. The TDOA techniques require
a high demand on the accurate measurement or estimation
of time delay. In contrast, received sensor signal strength is
comparatively much easier and less costly to obtain from the
time series recordings from each sensor.

In this paper, we presented a novel approach to estimate the
source location based on the received signal power (energy)
from different sensor modality (acoustic, seismic, PIR) in the
wireless sensor network system. The sensor field is divided
into several smaller regions. Each region, there is a manager
sensor node. Other nodes are detection nodes. The targets are
detected by multi-modality energy-basedCFARnode detection
(by detection nodes) and multi-modality region detection (by
manager node). Once region detection announces the detection
of the target, acoustic energy based localization (EBL) algo-
rithm is activated and performed to further locate the targets
in the activated region.

Experiments were conducted to evaluate this collaborative
source localization in wireless sensor network system. Results
show that this new approach is robust and accurate most of
time. And it need low bandwidth and low computation burden.

This paper is organized as follows: In section II, collabo-
rative multi-modality node detection and region detection is
described. In section III, we will derive the energy based
source localization algorithm. Experiments are provided in
section IV. A conclusion is given is section V.

II. COLLABORATIVE SOURCEDETECTION IN WIRELESS

SENSORNETWORK

A. Multi-modality node detection and region detection

The sensor field is divided into several smaller region. Each
region, we define one manager sensor node. Other nodes are
defined as the detection nodes.

The region is activated by our tracking algorithm imple-
mented by Kalman filter, which uses the previous localization
results to predict the target location in the next time period.
When it predicts that the targets will go into another region,
the current region manager node will send this information to
the manager node of that region. The corresponding region
is then activated. Each detection node in the activated region
calculates the average energy in every time-period for different
modality. And then, each detection node performs energy-
basedCFARdetection and calculates the noise mean and noise
variance for different modality. Detection node then reports the
binary detection results (0 or 1) for each modality as well as
acoustic energy, noise mean and noise variance to the manager
node in every time period. For example, suppose we have



three modality, say, acoustic, seismic and PIR. Now, region 1
is activated currently. At the most recent time period, using
CFARdetector, node i detects the target with acoustic energy
and PIR energy respectively. But it doesn’t detect the target
with seismic energy in this period. It then reports ’101’ as well
as average acoustic energy, noise mean and variance in this
period to the manager node. Manager node performs multi-
modality region detection algorithm to detect the targets. It
performs as follows:

The manager node first uses majority voting to get the
detection result for each modality. For example, in region 1,
if there are more than N/2 nodes report the acoustic detection,
where N is the number of detection node in region 1, the
manager node judges that the acoustic modality detection for
its region is 1. So does seismic modality detection. PIR sensor
is special, manager node announces PIR detection if there is
more than 1 PIR detection. After that, manager node uses
different weights for different modality to fuse the detection
results of each modality. If the fusion result announces that
targets are in the region, acousticEBL algorithm is activated
and performed to further locate the targets in the region using
the most recent reported acoustic energy, noise mean and
variance from its detection nodes.

B. Energy-BasedCFAR Detector

Previously, we described that node detection used energy-
basedCFARdetector to detect targets for each modality. This
section, we will introduce the algorithm for thisCFARdetector.

Briefly, the CFAR detector proceeds as follows. AT0 time
series was taken at the beginning of the experiment to initialize
the meanµk(0) and standard deviationσk(0) of the noise
energy, assuming no presence of target during this period. This
is known as the noise level initialization phase. Then each
nodek goes to the detection phase where the energyyk(n) is
compared to a thresholdTk(n) at time n. Assuming the noise
energy sequence is independent Gaussian, we can defineTk(n)
as Tk(n) = µk(n) + Cσk(n), whereC is a constant chosen
to yield a desired constant false alarm probability:

PFA =
1√
(2π)

∫ ∞

C

exp(−1
2
u2)du

The decisionγ(n) then is

γ(n) =
{

1 yk(n) > Tk(n)
0 yk(n) < Tk(n)

where γ(n) = 1 indicates the target presence and 0
for target absence. Ifγ(n) = 1, then the threshold keeps
unchanged,Tk(n) = Tk(n − 1); otherwise, it is updated as
follows:

µk(n) = αµk(n− 1) + (1− α)yk(n)

σ2
k(n) = ασ2

k(n− 1) + (1− α)[yk(n)− µk(n)]2

Tk(n) = µk(n− 1) + Cσk(n)

whereα is a ”memory factor” between 0 and 1.

III. A COUSTICENERGY BASED SOURCELOCALIZATION

In [9], we derived that, when the sound propagates in the
free and homogenous space and the targets are pre-detected to
be in a certain region of the sensor field, the acoustic energy
decay function can be modelled by the following equation:

yi(n) = ysi(n) + εi(n) = gi

K∑

j=1

Sj(n)
‖ ρj(n)− ri ‖2 + εi(n) (1)

WhereK is the number of targets detected in the region.
yi(n) is the acoustic energy received by theith sensor.ysi(n)
is the the sum of the decayed energy emitted from each of
these K targets to ith sensor (i.e. energy sources).εi(n)
is a perturbation term that summarizes the net effects of
background additive noise and the parameter modelling error.
gi and ri are the gain factor and location of theith sensor,
Sj(n) and ρj(n) are respectively, the energy emitted by the
jth source (measured at1 meter from the source) and its
location duringnth time interval. The number of sensors in the
activated region is assumed to beN , the location dimension
is assumed to bep. n is thenth time interval.

In [9], we analyzed the probability distribution ofεi(n) and
concluded that it can be modelled well with an independently,
identically distributed Gaussian random variable when the time
window T for averaging the energy is sufficiently large, i.e,
T > 40/fs, wherefs is the sampling frequency. The mean
and variance of eachεi(n), denoted byµi(n) (> 0) andσ2

i (n),
can be empirically estimated from ourCFARdetector that we
described previously.

To simplify our notation, in the following parts, we will not
denoten explicitly in our equation. All parameters refer to the
same time window automatically, i.e., we denoteyi for yi(n).

A. Maximum Likelihood (ML ) Estimation forEBL problem

Define

Z =
[ y1−µ1

σ1

y2−µ2
σ2

. . . yN−µN

σN

]Γ
(2)

Equation(1) can be simplified as:

Z = GDS+ξ = HS+ξ (3)

Where:

S =
[

S1 S2 · · ·SK

]Γ
(4)

H = GD (5)

G = diag
[ g1

σ1

g2
σ2

. . . gN

σN

]
(6)
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(7)

dij = |ρj − ri| is the Euclidean distance between theith

sensor and thejth source.



ξ = [ξ1 ξ2 ... ξN ]T , whereξi is independent Gaussian noise
∼ N(0, 1)

The unknown parametersθ in the above function is:

θ =
[

ρT
1 ρT

2 · · · ρT
K S1 S2 · · · SK

]T

The log-likelihood function of aboveEBL problem is:

`(θ) ==
−1
2
‖ Z−GDS ‖2 (8)

Given the log-likelihood functioǹ(θ) denoted as equation
(8), ML estimations of the parametersθ are the values that
maximize`(θ), or equivalently, minimize

Ł(θ) =‖ Z−GDS ‖2 (9)

Equation (9) hasK(p+1) unknown parameters, there must
be at leastK(p+1) or more sensors reporting acoustic energy
readings to yield an unique solution to this nonlinear least
square problem.

Define pseudoinverse ofH asH†, projection matrix ofH
asPH , and perform reduced SVD ofH, we have:

H† =
(
HT H

)−1
HT (10)

PH = H(HTH)−1HT = UH UT
H (11)

H = GD = UHΣHVT
H (12)

Set ∂L
∂S = 0, we have:

S = H†Z (13)

Insert (13) into the cost function (9), we get modified cost
function as follows:

arg MIN︸ ︷︷ ︸
{ρ1,ρ2,...ρk}

L = arg MIN︸ ︷︷ ︸
{ρ1,ρ2,...ρk}

(
ZT (I−PH)T (I−PH)Z

)

= arg MAX︸ ︷︷ ︸
{ρ1,ρ2,...ρk}

(
ZT PT

HZ
)

= arg MAX︸ ︷︷ ︸
{ρ1,ρ2,...ρk}

ZT UHUT
HZ (14)

For single source,j = 1,

H =
[

g1

σ1 d2
1

,
g2

σ2 d2
2

, · · · , gn

σn d2
n

]T

,

UH =
H

‖ H ‖
Exhaustive search can be used to get the source location to

maximize function (14). However, the computation complexity
is very high. For example, suppose our detected search region
is 128× 128, if we useexhaustivesearch using the grid size
of 4× 4, we need1024K times of search for every estimation
point, whereK is the number of the targets. Rather, we can
use Multi-Resolution (MR) search to reduce the number of
search times. For example, we can use the search grid size16×
16, 8×8, 4×4 sequentially. Then, the number of search times
is reduced to64K+2∗4K . For two targets, it needs4128 search
times usingMR search with this search strategy and10242

search times usingexhaustivesearch to get one estimation.

We can further reduce the number of search times by reducing
our search region based on the previous location estimation,
the time interval between two localization operation, possible
vehicle speed and estimation error. In our experiment, all these
conditions are used. The search area we used for theprojection
solution is(xi−32, xi+32)× (yi−32, yi+32), where(xi, yi)
is the previous estimation location of theith target. Therefore,
for single target, we need only24 search; for two targets, we
need288 search for every localization estimation, which is
feasible for our distributed wireless networking system.

B. Nonlinear Least Square (NLS) Estimation for single Target
Localization

When there is only one target in the region, by ignoring the
additive noise termεi in the equation (1), we can compute the
energy ratioϕij of the ith and thejth sensors as follows:

ϕij =
(

yi/yj

gi/gj

)−1/2

=
‖ ρ− ri ‖
‖ ρ− rj ‖ (15)

Hereρ denotes the single target location. Other parameters
are the same as what described before.

Note that by sorting the calibrated energy readingsyi/gi,
for 0 < ϕij 6= 1, all the possible source coordinatesρ that
satisfy equation (15) reside on a p-dimensional hyper-sphere
described by the equation:

‖ ρ− cij ‖2= ζ2
ij (16)

Where the centercij and the radiusζij of this hyper-sphere
associated with sensor i and j are given by:

cij =
ri − ϕ2

ijrj

1− ϕ2
ij

, ζij =
ϕij ‖ ri − rj ‖2

1− ϕ2
ij

(17)

If ϕij = 1, the solution of equation (15) form a hyper-plane
betweenri andrj , i.e.:

ρ(t)ιij = τij (18)

Whereιij = ri − rj , τij = |ri|2−|rj |2
2

So far, we show that, for single target at noiseless situation,
each energy ratio dictates that the potential target location must
be on a hyper-sphere or a hyper-plane within the sensor field.
With noise taken into account, the target location is solved
as the position that is closest to all the hyper-spheres and
hyper-planes formed by all energy ratios in the least square
sense, i.e., the single target location is solved by minimizing
the following cost function:

J(ρ) =
L1∑

l1=1

(|ρ− cl1 | − ζl1)
2 +

L2∑

l=12

(
ιT
l2ρ− τl2

)2
(19)

WhereL1 + L2 = L, L is the pairs of energy ratios can
be computed in our sensor field,l1 and l2 are indices of
the energy ratios computed between different pairs of sensor
energy readings.L1 andL2 are the number of hyper-spheres
and the number of hyper-planes respectively.

Again, exhaustive search,MR search can be used to solve
this NLSestimation.
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Fig. 1. sensor deployment, road coordinate and region specification for
experiments

IV. EXPERIMENTS

The raw signals were recorded by 29 sensor nodes deployed
along the road in the sensor field, CA in November 2001,
sponsored by the DARPA ITO SensIT project. Each sensor
node is composed of a palm with wireless ratio link, an
acoustic sensor, a seismic sensor, a PIR sensor and three
coaxial cables which connect the sensors to the palm. The
data we used to evaluate our collaborative source localization
algorithms were taken from 15 sensor nodes recording the
acoustic, PIR and seismic signatures of AAV vehicle going
from east to west during a time period of 2 minutes. Figure
1 shows the road coordinates and sensor node positions, both
supplied by the global positioning system (GPS). The sensor
field is divided into two regions as shown in the above figure.
Region 1 is composed of node1, 41, 42, 46, 48, 49, 50, 51.
Region 2 is composed of node52, 53, 54, 55, 56, 58, 59. In
region 1, node 1 is chosen as manager node, others are
detection node. In region 2, node 58 is chosen as manager
node, others are detection node. The sampling rate is fs =
4960Hz. The energy is computed by averaging the T=0.75sec
non-overlapping data segment (3720 data points).

Fig. 2 and Fig. 3 show the multi-modality node detection
results for acoustic, seismic and PIR modality and the multi-
modality region detection results. The constantC we choose
for theCFARdetector areC = [3.5, 5, 10] for acoustic, seismic
and PIR respectively.α = 0.99 for all of the three modality
CFAR detector. The weights we used for the region fusion
decision of the acoustic modality, seismic modality and PIR
modality are 0.3, 0.5, 0.2 respectively. If the region fusion
result is bigger than or equal to 0.5, manager node announces
the target.

Fig. 4 shows the AAV ground truth and the localization
results based on theML algorithm with projection solution and
NLSalgorithm.MRsearch is used to estimate the location. The
grid size we chose is: 4*4, 2*2, 1*1. Note that the missing
ground-truth points in this figure are the miss-detection points
by our multi-modality detector and therefore, there is no
localization operation at these points.

To evaluate this collaborative source localization algorithms,
we define the specifity and sensitivity parameters to indicate
the performance of region detection. Specifity is the rate which
denotes the correct announcement percentage when the region
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Fig. 2. Multi-modality region detection for region 1 (AAV)
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Fig. 3. Multi-modality region detection for region 2 (AAV)

announces the target detection. Sensitivity is detection rate
when the targets are in the region. We also compute the
localization errors defined as the Euclidian distance between
the location estimates and the true target locations for all time
instant when region detection is announced. The true target
location can be determined since they must be positioned on
the target trajectory which can be extracted from GPS log.
These localization errors are then grouped into different error
range, i.e.,0 ∼ 10, 10 ∼ 20, ...40 ∼ 50,≥ 50. We call it as
error histogram of our localization algorithm. Fig. 5 shows
this localization error histogram for AAV localization.

Raw acoustic, seismic and PIR signatures were also
recorded for DW vehicle in the experiments. Using the same
sensor network system and collaborative source localization

−100 −50 0 50 100 150
−100

−80

−60

−40

−20

0

20

40

60

X coordinate

Y
 c

oo
rd

in
at

e

experiment for aav3 single target localization

miss detection, so localization is not active here

ground truth
NLS
ML
road coordniates

Fig. 4. AAV ground truth and localization estimation results based onML
algorithm with projection solution andNLSalgorithm (MR search is used, grid
size is 4*4, 2*2 and 1*1. Estimation results look bias from the ground-truth,
see discussion for reasoning)
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algorithms, we get the localization results and localization
error histogram for DW data. They are shown in Fig. 6 and
Fig. 7.

1) discussion:From experiment, we can see that this new
collaborative source localization algorithm is robust and accu-
rate most of time. The specifity and sensitivity parameters are
high. BothML andNLS algorithms perform well estimations
of target location when the targets are detected to be in the
region.ML algorithm with projection solution outperforms to
NLS algorithm in the sense that it has less estimation error.
Besides, there are some points having estimation error bigger
than 50 meters usingNLS estimation. This says thatNLS
is not as stable asML estimation with projection solution.
However,NLSalgorithm needs less bandwidth. This is because
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Fig. 7. Estimation error histogram for DW experiment data

NLS doesn’t use noise variance for its estimation whileML
algorithm does need it. So, forNLSalgorithm, we save about
1/4 bandwidth. (ForML estimation, detection nodes need to
report acoustic energy, noise mean, noise variance and multi-
modality binary node detection results in every 0.75 second).

Fig. 4 and Fig. 6 show that the localization estimation
results look bias from the real ground-truth. This might be
caused by uncorrected GPS position reports, un-calibrated
sensor gain, incorrect background noise estimation or some
individual sensor fault measurements. It can be seen that both
AAV and DW ground truth also look bias from the road while
in the experiment, they moved along the road. We can also see
that estimation results are closer and less biased to the road
than to the ground-truth.

V. CONCLUSION

Collaborative energy-based source localization method has
been presented. Experiments show that this new approach is
robust and accurate most of time. Besides, this new approach
needs low communication bandwidth since the algorithm is
activated only the region is activated. In addition, each sensor
only reports energy reading, noise mean and variance (NLS
doesn’t need variance), and detection binary results to the
manager node at every time period rather than at every time in-
stant. Besides, it is power efficient. For detection node, it only
calculates the average energy in the time period and performs
energy-basedCFARdetector (simple algorithm). For manager
node, it performs simple voting algorithm and decision fusion
algorithm. Manager node performs localization algorithm only
if the region detection announces the targets.ML estimation
with projection solution andMR search under the reduced
search region saves the computation burden and so, saves the
manager node battery further more. Detection node energy
computation requires averaging of instantaneous power over
a pre-defined time interval. Hence it is less susceptible to
parameter perturbations, and so, the algorithm is robust.
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