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ABSTRACT

There is a growing interest in the use of wireless ad hoc sensor networks to monitor, detect,
and track the movement of speci�ed targets in a geographic region. A common concern in the
deployment of such networks is whether or not a target can pass or intrude a sensor �eld without
being detected. Recent papers in literature have de�ned a measure called exposure to quantify
the likelihood of a target passing through a sensor �eld without being detected. These papers
di�er in the de�nition of exposure. Also, the existing de�nitions of exposure are indicators of the
likelihood of intrusion and not a direct measure of it.

In this paper, we directly work with probability of detection instead of its indicators. We
also probabilistically account for the presence of noise in the sensor readings. In the presence
of noise, there is a tradeo� between the probability of a target passing through a sensor �eld
without detection and the false alarm probability (i.e., the probability of falsely detecting the
presence of target). We analytically characterize this tradeo� and illustrate the tradeo� for
example deployments.

We also introduce a variant of the traversal problem called unauthorized monitoring. This
problem is of interest if sensor �elds are used to secure an asset. We analytically characterize
the probability of unauthorized monitoring and the tradeo� between this probability and its false
alarm probability in the presence of noise.

Index Terms: Wireless ad hoc networks, sensor deployment, sensor exposure prooblem.
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1 Introduction

Due to recent advances in technology, it is now possible to build low cost devices with sensing,

processing, and wireless communication capabilities [1]. A large number of these devices can be

deployed in a region of interest to form a network that monitors, detects, and tracks speci�ed

targets as they move through the sensor �eld [2]. A common concern in such networks is whether

or not a target can intrude a given sensor �eld without being detected. Recent papers have

quanti�ed this concern using a notion called exposure [3, 4, 5]. The papers di�er in the de�nition

of exposure.

For instance, in [3], the authors propose two di�erent measures of exposure: maximal breach

and maximal support. The maximal breach path through a sensor �eld is de�ned as a path where

its closest distance to any of the sensors is as large as possible while the maximal support path

is de�ned as a path where the farthest distance from the closest sensor is as small as possible.

Algorithms for e�ciently determining the maximal breach and maximal support path for a given

sensor �eld are also described. In [4], exposure is de�ned as the total energy that the sensors

will gather from the target as it moves through the �eld. The smaller this energy the lesser the

likelihood of detecting the target. An algorithm for determining a path with the least exposure

in this sense is also developed in [4]. The algorithms in [3, 4] are centralized. Distributed versions

of algorithms to accomplish the same objectives are described in [5].

One of the problems considered in this paper is similar to the ones in [3, 4, 5]. However, there

are some key di�erences. First, the de�nition of exposure is di�erent. We de�ne the exposure

of a path as the probability of detecting a target traversing the �eld using the path. Although,

the total energy measure in [4] is an indicator of this probability, the relationship between total

energy and the detection probability is not linear. In particular, it depends on the detection

algorithm being used by the sensors. Second, energy measurements at sensors are typically very

noisy. The probability of detecting a target moving through a �eld depends on this noise. In

the presence of noise, there is usually a non-zero probability of incorrectly detecting a target

when there is actually no target in the �eld, i.e., false alarm. In fact, there is usually a tradeo�

between the probability of false alarm and the probability of detection. That is, to achieve higher

probabilities of detection one must endure higher probabilities of false alarm. In this paper, we

analytically characterize this tradeo� and develop algorithms for �nding a path with the least

exposure.

The second problem considered in this paper is a variant of the above problem called unautho-

rized monitoring. This problem is of interest in situations where a sensor �eld is used to protect

an asset from unauthorized monitoring, i.e., in situations where the sensor �eld is deployed to

detect intruders who try to gather valuable information from an asset by monitoring it for a
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certain duration. Once again, in the presence of noise, there is tradeo� between probability of

detection and probability of false alarm. We analytically characterize this tradeo� and develop

algorithms for �nding a path with the least exposure.

The rest of this paper is organized as follows. The unauthorized traversal and monitoring

problems are formulated in Section 2. The solutions to the two problems are developed in Sec-

tion 3. A numerical characterization of the tradeo� between exposure and false alarm is presented

in Section 4. The paper concludes in Section 5.

2 Problem Formulation

Consider a rectangular sensor �eld with n sensors deployed at locations si, i = 1; : : : ; n. A target

at location u emits a signal which is measured by the sensors. The signal from the target decays

exponentially with distance. If the decay coe�cient is k, the signal energy of a target at location

u measured by the sensor at si is given by

Si(u) =
K

jju� sijjk
;

where K is the energy emitted by the target and jju� sijj is the geometric distance between the

target and the sensor. Depending on the environment the value k typically ranges from 2.0 to

5.0 [6].

Energy measurements at a sensor are usually corrupted by noise. If Ni denotes the noise

energy at sensor i during a particular measurement, then the total energy measured at sensor i

when the target is at location u is

Ei(u) = Si(u) +Ni =
K

jju� sijjk
+Ni:

The sensors collaborate to arrive at a consensus decision as to whether a target is present

in the region. There are two basic approaches for reaching this consensus: Value fusion and

Decision fusion [7]. In value fusion, one of the sensors gathers the energy measurements from

the other sensors, totals up the energy and compares the sum to a threshold to decide whether a

target is present. If the sum exceeds the threshold, then the consensus decision is that a target is

present. In contrast, in decision fusion, each individual sensor compares its energy measurement

to a threshold to arrive at a local decision as to whether a target is present. The local decisions

(1 for target present and 0 otherwise) from the sensors are totaled at a sensor and the sum is

compared to another threshold to arrive at the consensus decision. In some situations, value

fusion outperforms decision fusion and vice versa.
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Value Fusion. The probability of consensus target detection when the target is at location u

is

Dv(u) = Prob

"
nX

i=1

K

jju� sijjk
+Ni � �

#

= Prob

"
nX

i=1

Ni � � �
nX

i=1

K

jju� sijjk

#
;

where � is the value fusion threshold. If the noise processes at the sensors are independent,

then the probability density function of
Pn

i=1Ni equals the convolution of the probability density

function of Ni, i = 1; : : : ; n. In particular, if the noise process at each sensor is Additive White

Gaussian Noise (AWGN), then
Pn

i=1Ni has a Chi-square distribution of degree n.

Due to the presence of noise, the sensors may incorrectly decide that a target is present even

though there is no target in the �eld. The probability of a consensus false target detection is

Fv = Prob

"
nX

i=1

Ni � �

#
: (1)

As above, if the noise processes at the sensors are independent and AWGN, then false probability

can be computed from the Chi-square distribution of degree n.

Decision Fusion. For decision fusion, the probability of consensus target detection when the

target is located at u is

Dd(u) = Prob

"
nX
i=1

hd;i(u) � �2

#

=
nX

j=�2

 
n
j

!
� (Prob [hd;i(u) = 1])j � (Prob [hd;i(u) = 0])(n�j)

where

Prob [hd;i(u) = 1] = Prob

�
Ni � �1 �

K

jju� sijjk

�
and

Prob [hd;i(u) = 0] = 1� Prob [hd;i(u) = 1] :

can be computed from Chi-square distribution of degree 1 for AWGN noise process.

The probability of false target detection at sensor i is

Prob[gd;i = 1] = Prob[Ni � �1] and

Prob[gd;i = 0] = 1� Prob[gd;i = 1]:
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Figure 1: Example sensor �elds for UT and UM problems.

Therefore, the probability of consensus false target detection is

Fd = Prob

"
nX

i=1

gd;i � �2

#

=
nX

j=�2

 
n

j

!
� (Prob [gd;i = 1])j � (Prob [gd;i = 0])(n�j) :

The above equations serve as an analytic basis for the two problems, namely Unauthorized

Traversal (UT) and Unauthorized Monitoring (UM), considered in this paper. In particular,

we de�ne exposure to be the probability of detecting the target or an intruder carrying out the

unauthorized activity, where the activity depends on the problem under consideration. The

analytic expression for the exposure depends on the problem and the associated activity.

Unauthorized Traversal (UT) Problem: We are given a sensor �eld with n sensors at

locations s1, s2, . . . , sn (see Figure 1(a)). We are also given the stochastic characterization of

the noise at each sensor and a tolerable bound, �, on the false alarm probability. Let P denote a

path from the west to the east periphery of the sensor �eld. A target traversing the sensor �eld

using path P is detected if it is detected at some point u 2 P . The exposure of path P is the net

probability of detecting a target that traverses the �eld using P . The problem is to �nd the path

P with the least exposure.
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Unauthorized Monitoring (UM) Problem: We are given a sensor �eld with n sensors at

locations s1, s2, . . . , sn (see Figure 1(b)). We are also given the stochastic characterization of

the noise at each sensor and a tolerable bound, �, on the false alarm probability. Within the

sensor �eld, there is an asset at a speci�ed location. An area around the asset is identi�ed as

the red zone (e.g., the shaded area in Figure 1(b)). An intruder can gain unauthorized valuable

information about the asset if he/she spends at least T time units in the red zone. Let P denote

a path from the sensor �eld periphery to a point in the red zone. The exposure of path P is the

net probability of detecting an intruder who enters the red zone using path P , spends at least T

time units inside the red zone, and exits using path P . The problem is to �nd the path P with

the least exposure.

3 Proposed Solutions

3.1 UT Problem

Let P denote a path from the west to the east periphery through the sensor �eld. A target that

traverses the �eld using P is not detected if and only if it is not detected at every point u 2 P . As

a result, the net probability of not detecting a target traversing the �eld using P is the product of

the probabilities of no detection at each point u 2 P . That is, if G(P ) denotes the net probability

of not detecting a target as it traverses over path P , then,

logG(P ) =

Z
u2P

log(1�D(u))du;

where D(u) is either Dv(u) of Dd(u) depending on whether the sensors use value or decision

fusion to arrive at a consensus decision. Since the exposure of P is (1�G(P )), the problem is to

�nd the path which minimizes (1� G(P )) or equivalently the path that minimizes j logG(P )j1.

In general, the path P that minimizes j logG(P )j can be fairly arbitrary in shape. The

proposed solution does not exactly compute this path. Instead, we rely on the following ap-

proximation. We �rst divide the sensor �eld into a �ne grid and then assume that the target

only moves along this grid. The problem then is to �nd the path P on this grid that minimizes

j logG(P )j. Note that, the �ner the grid the closer the approximation. Also, one can use higher

order grids such as in [4] instead of the rectangular grid we use in this paper. The higher order

grids change the runtime of the algorithm but the approach is the same as with the rectangular

grid.

1Note that, G(P ) lies between 0 and 1 and thus logG(P ) is negative.
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1. Generate a suitably �ne rectangular grid.
2. For each line segment l between adjacent grid points
3. Compute j logmlj using Equation 2
4. Assign l a weight equal to j logmlj

5. Endfor
6. Add a link from virtual point a to each grid point on the west
7. Add a link from virtual point b to each grid point on the east
8. Assign a weight of 0 to all the line segments from a and b
9. Compute the least weight path P from a to b using Dijkstra's algorithm
10. Let w equal the total weight of P .
11. Return P as the least exposure path with an exposure equal to 10�w.

Figure 2: Pseudo-code of the proposed solution for the UT problem.

On this grid, consider two adjacent points, say v1 and v2. Let l denote the line segment

between v1 and v2. Also let ml denote the probability of not detecting a target traveling between

v1 and v2 on the line segment l. Then, from the discussion above,

logml =
Z
u2l

log(1�D(u))du; (2)

where D(u) is either Dv(u) or Dd(u) depending on whether the sensors are using value or decision

fusion. Note that,ml lies between 0 and 1 and, therefore, logml is negative. Assign a non-negative

weight equal to j logmlj to each such segment l on this grid. Also, create a �ctitious point a and

add a line segment from a to each grid point on the west periphery of the sensor �eld. Assign a

weight equal to 0 for each of these line segments. Similarly, create a �ctitious point b and add a

line segment from b to each grid point on the east periphery of the sensor �eld. Assign a weight

equal to 0 for each of these line segments.

The problem of �nding the least exposure path from west periphery to east periphery is then

equivalent to the problem of �nding the least weight path from a to b on this grid. Such a path

can be e�ciently determined using the Dijkstra's shortest path algorithm [8]. A pseudo-code of

the overall algorithm is shown in Figure 2.

Example: Figure 3 shows a sensor �eld with eight sensors at locations marked by dark circles.

Assume the noise process at each sensor is Additive White Gaussian with mean 0 and variance

1. Further assume that the sensors use value fusion to arrive at a consensus decision. Then,

from Equation 1, we chose a threshold � = 3:0 to achieve a false alarm probability of 0.187%.

The �eld has been divided into a 10 � 10 grid. The target emits an energy K = 12 and the

energy decay factor is 2. The �gure shows the weight assigned to each line segment in the grid as

described above. The least exposure path found by the Dijkstra's algorithm for this weighted grid
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Figure 3: Illustration of the proposed solution for an example UT problem.

is highlighted. The probability of detecting the target traversing the �eld using the highlighted

path is 0.451.

3.2 UM Problem

Let P denote a path from a point in the �eld periphery to a point x in the red zone. Let R(P )

denote the portion of the path inside the red zone and let Y (P ) denote the portion of the path

outside the red zone. Let jR(P )j denote the length of R(P ). If the intruder moves with velocity

v, then the intruder will require jR(P )j=v time units to travel to x inside the red zone. Since the

same amount of time will be required in the red zone while exiting the �eld, the intruder must

spend t = (T � 2 � jR(P )j=v) at point x. Let H(P ) denote the probability of not detecting an

intruder who enters and exits using P and spends t time units at point x. The exposure then is

(1 �H(P )). The problem is to �nd a point x in the red zone and an associated path with the

least (1�H(P )) or equivalently with the least j logH(P )j.

As in the case of the UT problem, we do not exactly compute the path P that minimizes

j logH(P )j. Instead, we approximate by dividing the �eld into a �ne grid and assume that the

intruder only moves along the line segments on this grid. Also, similar to the solution for the UT

problem let ml denote the probability of not detecting an intruder moving over a line segment l
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1. Generate a suitably �ne rectangular grid.
2. For each line segment l between adjacent grid points
3. Compute j logmlj using Equation 2
4. Assign l a weight equal to j logmlj

5. Endfor
6. For each point x in the red zone
7. Determine least weight path Px from x to the periphery using Dijkstra's algorithm.
8. Let wx denote the total weight of Px.
9. If wx < min wx
10. min x = x
11. min wx = wx

12. min Px = Px

13. Endif

14. Endfor

15. Return min Px as the least exposure path with exposure equal to 10�min wx

Figure 4: Pseudo-code of the proposed solution for the UM problem.

on this grid. Then,

logH(P ) = 2
X
l2P

logml + (T � 2 � jR(P )j=v) � log(1�D(x))

Note that, this expression is speci�c to the point x in the red zone. The problem is to �nd the

point x and the associated path Px from a suitable point in the periphery to x that results in the

least exposure.

The algorithm to �nd path P which minimizes j logH(P )j is as follows. For each point x

in the red zone determine the least weight path Px to the �eld periphery using the Dijkstra's

algorithm [8]. Given x and Px one can compute j logH(Px)j. The desired least exposure path is

obtained by choosing x in the red zone and the associated path Px that minimizes j logH(Px)j.

A pseudo-code of the overall algorithm is shown in Figure 4.

Example: Figure 5 shows a sensor �eld with eight sensors protecting an asset. The red zone is

shaded. The noise process at each sensor is Additive White Gaussian with mean 0 and variance

1. Further assume that the sensors use value fusion to arrive at a consensus decision. Then, from

Equation 1, we chose a threshold � = 3:5 to achieve a false alarm probability of 0.03%. The �eld

has been divided into a 10� 10 grid. The intruder emits energy K = 12 and the energy decay

factor is 2. The �gure shows the weight assigned to each line segment in the grid as described

above. A least exposure path for the UM problem is highlighted. The probability of detecting

an intruder who uses this path for unauthorized monitoring by spending 10 time units in the red

zone is 0.677.
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Figure 5: Illustration of the proposed solution for an example UM problem.

4 Tradeo� Between Exposure and False Alarm

The tolerable false alarm probability determines the detection threshold(s) which in turn, de-

termines the exposure. As threshold increases, the false alarm probability decreases because the

likelihood of noise energy exceeding the threshold decreases. Similarly, as the threshold increases,

the total energy needed to detected an existing target is larger, and therefore, the probability of

detecting a target decreases. Hence, the exposure also decreases with threshold.

In a good sensor deployment, the false alarm probability should be as small as possible. At

the same time, the probability of detecting a target/intruder on the least exposure path should

be as large as possible. Based on the above discussion these two requirements are in conict with

each other. That is, one must select a threshold that makes a good compromise between exposure

and false alarm probability.

The tradeo� between exposure and false alarm probability is illustrated in Figures 6 and 7.

The two curves in Figure 6 show the false alarm probability and the probability of detecting the

target on the least exposure path as function of threshold for the UT problem. Similar curves

for the UM problem are shown in Figure 7. The results are for the sensor deployments shown in

Figures 1(a) and 1(b), respectively. The noise process at each sensor is Additive White Gaussian
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Figure 6: Tradeo� between exposure and false alarm in UT problem.
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Figure 7: Tradeo� between exposure and false alarm in UM problem.
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with mean 0 and variance 1. The noise process at the sensors are independent. The target and

the intruder emit an energy K = 12 and the energy decay factor is 2. For each value of the

threshold, the least exposure path is computed using the algorithms proposed in Section 3 using

a 10 � 10 rectangular grid. The sensors use value fusion for arriving at the consensus decision.

For Figure 7(b) the intruder spends 10 time units inside the red zone.

As expected, the false alarm probability and the probability of detection in the least expo-

sure path decrease with threshold for both problems; demonstrating that the threshold must be

carefully chosen to reach a good compromise between false alarm and exposure. For the scenar-

ios corresponding to the �gures, threshold values less than 2.0 result in unacceptably large false

alarm probabilities while values greater than 4.0 leave the sensor �eld almost open to unauthorized

traversal/monitoring. Threshold values between 2.0 and 4.0 seem to o�er a good compromise;

the exact value must be chosen based on the application.

5 Summary

In this paper, we considered two problems in wireless ad hoc sensor networks, namely unautho-

rized traversal and unauthorized monitoring. For both problems, we use probability of detecting

a target carrying out the corresponding unauthorized activity as the measure of goodness of the

deployment. We believe that this measure is better than the ones in literature. In addition

to being more intuitive, this measure allows one to account for the presence of noise in sensor

readings.

In the presence of noise, the paper shows that there is a tradeo� between probability of false

alarm and the probability of detecting a target carrying out an unauthorized activity. The paper

analytically characterizes this tradeo� and develops algorithms to �nd the most vulnerable paths

for the unauthorized activity.
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