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Abstract

In this paper, sub-band energy based collaborative target localization in wireless sensor network is presented.
Three steps including target detection, target location candidates estimation and target location identification
have been performed to realize the task of target localization. In the step of target detection, each sensor node
detects the targets by filtered total acoustic energy based constant false alarm (FTE CFAR) detector, acoustic
sub-band energy based constant false alarm (SE CFAR) detector and multi-modality energy based constant false
alarm (MME CFAR) detector respectively. Region based target detection fusion is then performed based on
all node detection results from the three detectors. Sub-band acoustic energy based algorithm is performed
as the second step to estimate the target location candidates when targets are detected in the region. Finally,
sequential bayesian estimation is used to identify the most possible target location from these candidate locations.
Experiments have been conducted. Results show that this new approach is accurate and robust to the strong
background noise. Besides, communication bandwidth and computation burden are not high compared with the
other approaches.

I. I NTRODUCTION

The emergence of small, low-power devices that integrate micro-sensing and actuation with on-board
processing and wireless communication capabilities stimulates great interests in wireless distributed sensor
network. Such distributed sensor network systems have a variety of applications [1], [2]. Examples include
underwater acoustics, battlefield surveillance, electronic warfare, geophysics, seismic remote sensing, and
environmental monitoring. Such sensor networks are often designed to perform tasks such as detection,
classification, localization and tracking of one or more targets in the sensor field. The sensors are typically
battery-powered and have limited wireless communication bandwidth. Therefore, efficient collaborative signal
processing algorithms that consume less energy for computation and communication are needed.

An important collaborative signal-processing task is source localization using a passive and stationary sensor
network. The objective is to estimate the positions of the moving targets within a sensor field monitored by
the sensor network.

Most localization methods depend on three types of physical variables measured by or derived from sensor
readings for localization: time delay of arrival (TDOA), direction of arrival (DOA) and received sensor signal
strength or power. DOA can be estimated by exploiting the phase difference measured at receiving sensors
[3], [4],[5] and is applicable in the case of a coherent, narrow band source. TDOA is suitable for broadband
source and has been extensively investigated [6], [7], [8]. In practice, DOA measurement typically require costly
antenna array on each node. The TDOA techniques require a high demand on the accurate measurement or
estimation of time delay. In contrast, received sensor signal strength is comparatively much easier and less
costly to obtain from the time series recordings from each sensor.

In [9], source localization based on the received acoustic power (energy) has been presented. Simulations
and experiments show that this approach is robust and accurate most of time. However, the performance of
this approach degrades a lot when source signals are corrupted by strong background noise. To address these
problems, we propose a new approach that uses sub-band energy rather than the entire energy to localize the
targets.
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Acoustic sub-band energy distribution or say, power spectrum density distribution (PSD) is a feature of a
particular target. Background noise may have significant components on some spectrum covered by the target
signal, but it is not necessary that background noise has significant components on all the spectrum covered
by the target signal. Therefore, if we estimate the target location based on the different sub-band energies, we
may get several location candidates, some of these location candidates should be the true target location since
these locations are estimated from un-corrupted sub-band energy decay functions. We would like to identify
the true target location from these location candidates. Using sequential bayesian detection, we can identify
this true target location.

The task of localization is divided into three steps, i.e., target detection by node detection usingFTE
CFAR detector,SE CFARdetector andMME CFARdetector and region based decision fusion based on the
node detection results; target candidate location estimation using sub-band acoustic energies when targets are
detected in the region and sequential bayesian detection to identify the true target location. The first step:
target detection is important. It can reduce the computation burden since localization algorithm won’t be
executed if there is no detection. Besides, it makes the localization algorithm more robust since when targets
are detected in the region, we may have higher SNR, which is an important condition for high performance
of all localization algorithms.

Experiments are conducted to evaluate this collaborative target localization algorithm in wireless sensor
network system. Results show that this new approach is accurate and robust to the strong background noise.

The rest of the paper is organized as follows: In section II, we introduce node detection usingFTE CFAR
detector,SE CFARdetector andMME CFAR detector and region based decision fusion based on the node
detection results. In section III, we introduce sub-band energy based source localization algorithm. Sequential
bayesian detection to identify the true target location is introduced in section IV. Experiments and evaluations
on this approach are provided in section V. A conclusion is given is section VI.

II. TARGET DETECTION IN WIRELESS SENSOR NETWORK

The sensor field is divided into several smaller region. Each region, we define one manager sensor node.
Other nodes are defined as the detection nodes.

The region is activated by our tracking algorithm implemented by Kalman filter, which uses the previous
localization results to predict the target location in the next time period. When it predicts that the targets
will go into another region, the current region manager node will send this information to the manager node
of that region. The corresponding region is then activated. Each detection node in the new activated region
will perform the node detection using filtered total acoustic energy based constant false alarm (FTE CFAR)
detector, acoustic sub-band energy based constant false alarm (SE CFAR) detector and multi-modality energy
based constant false alarm (MME CFAR) detector. Each detection node will send these results to the manager
node. Manager node will then perform region based fusion decision to detect the target in the region.

A. Energy-BasedCFAR Detector

Energy based constant false alarm (CFAR) detector detects targets based on the assumption that background
noise is relatively stable. When signal energy received by the sensor exceeds certain value, we assume that
the target appears. The algorithm is proceeded as follows:

A t0 time series is taken at the beginning to initialize the meanµi(0) and standard deviationσi(0) of the
background noise energy, assuming no presence of target during this period. This is known as the noise level
initialization phase. Then each nodei goes to the detection phase where the energyyi(n) is compared to a
thresholdTi(n) at time n. Assuming the noise energy sequence is independent Gaussian, we can defineTi(n)
asTi(n) = µi(n) + Cσi(n), whereC is a constant chosen to yield a desired constant false alarm probability:

PFA =
1√
(2π)

∫ ∞

C

exp(−1
2
u2)du

The decisionγi(n) then is

γi(n) =
{

1 yi(n) > Ti(n)
0 yi(n) < Ti(n)
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Fig. 1. Sub-band acoustic energy distribution for AAV and DW

whereγi(n) = 1 indicates the target presence at time n and 0 for target absence at time n. Ifγi(n) = 1,
then the threshold keeps unchanged,Ti(n) = Ti(n− 1); otherwise, it is updated as follows:

µi(n) = (1− α)µi(n− 1) + αyi(n)

σ2
i (n) = (1− α)σ2

i (n− 1) + α[yi(n)− µi(n)]2

Ti(n) = µi(n− 1) + Cσi(n)

whereα is a factor between 0 and 1, indicating the approximate inverse of average length of mean and
variance. For example,α = 1/8 indicates the average length is 8. The reason we use this factor is to avoid
the recording of the previous raw signal so that we can save memory and computation time, but still get the
approximate updated mean and variance of the noise.

As we point out in the beginning, energy basedCFARdetector detects the targets by assuming background
noise is relatively stable. However, in real situation, there are various sources that are not the targets we are
detecting. Total energy basedCFARdetector will treat them as real targets and produce false alarm. Following
we will introduce filtered total acoustic energy based constant false alarm (FTE CFAR) detector, acoustic
sub-band energy based constant false alarm (SE CFAR) detector and multi-modality energy based constant
false alarm (MME CFAR) detector to reduce the false alarm.

B. FTE CFARDetector,SE CFARDetector andMME CFAR Detector

Acoustic power spectrum density (PSD) distribution ( sub-band energy distribution) is a feature for a
particular target. For example, acoustic energy for Assault Amphibian Vehicle (AAV) is mainly distributed on
the frequency between0HZ and500HZ; acoustic energy for dragon wagon vehicle (DW) is mainly distributed
on the sub-band between0HZ and 200HZ. Fig. 1 shows thePSD distribution for AAV and DW acoustic
signal averaged by measurements of 17 nodes in 2 minutes in our experiment. The sampling frequency is
4960HZ.

As described previously, the acoustic signal received by the sensor node might be corrupted by any sources
that we are not interested. The existence of these spurious sources degrades the performance of our detection
and localization. In this paper, we treat all these spurious sources as well as random noise as background
noise. An important task in detection and localization algorithm is to filter out background noise energies
from received energy. One way to do this is to analyze the measured sub-band energy and use sub-band
energy distribution characteristics to do detection and localization. In this section, we will introduceFTE
CFAR detector,SE CFARdetector andMME CFARdetector to filter out the background noise in the target
detection. In section III, we will introduce how to improve the localization results by sub-band energy based
localization algorithm.
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Fig. 2. Measured energy distribution for AAV by sensor node 61

1) FTE CFARDetector: Fig. 2 shows total energy, sub-band energies and ratios of sub-band energy to total
energy measured by one node in our experiment for detecting AAV targets. The sampling speed is 4960HZ.
The energy is calculated by averaging the time window of 0.75 second, i.e., by averaging non-overlapping
3720 sampling points. It can be seen that the total energy is quite noisy. If we use total energy forCFARnode
detection, detection results have quite a few of false alarms. Yet, the figure also shows that only the points
at the interval between 72(0.75*72sec) and 88(0.75*88sec) have the sub-band energy distribution (or PSD
distribution) similar to AAV sub-band energy distribution, i.e., sub-band energy in the range of100 ∼ 200HZ
has the largest component in the total energy, sub-band energy in the range of0 ∼ 100HZ has the second
largest component, the third largest component is the range from 200HZ to 300HZ and so on. So, with the
comparison of measured sub-band energy distribution and sub-band energy distribution characteristics for the
detecting target, we can filter out a large amount of false alarm. We call this algorithm as filtered total energy
based CFAR detector (FTE CFAR).

2) SE CFARDetector: FTE CFARdetector can reduce lots of fault alarm. Yet, it also creates the probability
of miss detection. It is possible that there exist several sources in the detection region, one of which is the
target source we are detecting, but this target signal strength is not as strong as other sources, or it is relatively
far to the detection node compared to the other sources. Then if we use total energy basedCFAR detector,
we can detect this target. However, if we useFTE CFARdetector, we will miss detecting the targets as the
sub-band energy distribution is no longer to be similar to that particular target and so, the detection will be
filtered out. To reduce the probability of miss detection, we also detect the targets by using sub-band energy
based CFAR (SE CFAR) detector. TheSE CFARdetection results are then fused withFTE CFARdetection
results. The use ofSE CFARdetection is hinted by the following observation:

For every target, its acoustic signal is band limited, i.e., its acoustic energy is mainly concentrated on certain
bands. Background noise may have significant components on some spectrum covered by the target signal,
but it is not necessary that background noise has significant components on all the spectrum of the target
signal. Therefore, if targets exist in the region, even if the signal is corrupted, there still exists some relatively
clean bands that are mainly comprised of the target signal only. We can use sub-band energy to detect the
target and use these detection results to compensate theFTE CFARdetection results. For example, in Fig. 2,
background noise is mainly from 0HZ to 100HZ. It completely destroyed the target signal at the sub-bands of
this range. However, it shouldn’t destroy the sub-band from 100HZ to 500HZ, which also have the significant
components for AAV signal. So, if it is purely noise signal, then we get 1 detection at the sub-band from 0Hz
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to 100 Hz, but 0 detection at the sub-bands from 100HZ to 500HZ and 0 detection ofFTE CFARdetection
results. Use certain fusion decision, we announce 0 detection. If it is strong noise plus true target, we get 0
detection ofFTE CFAR(as the noise destroyed the spectrum distribution), however, we get 1 detection at all
the sub-bands from 0Hz to 500Hz, use certain fusion algorithm, we can still detect the target.

The choices of the sub-band ranges depend on thePSDdistribution characteristics of the detected signal. For
example, the energy of acoustic signal for AAV is mainly concentrated on0HZ ∼ 500HZ, we can choose
the sub-band components for AAV as0 ∼ 100HZ, 100 ∼ 200HZ, 200 ∼ 300HZ, 300 ∼ 400HZ and
400 ∼ 500HZ. For DW, we can choose the sub-band components as0 ∼ 40HZ, 40 ∼ 80HZ, 80 ∼ 120HZ,
120 ∼ 160HZ and160 ∼ 200HZ since the acoustic signal for DW is mainly concentrated on the sub-band
from 0HZ to 200HZ.

3) MME CFAR Detector: To further reduce the false alarm and miss detection, we also use the multi-
modality signal such as seismic and PIR signal to do the energy based CFAR (MME CFAR) detection.

The overall strategy of node detection is as follows:
For every node i,
1. Detect the target use total acoustic energy, if it is detected, setADi0 = 1, where i stands for theith

sensor node,0 stands for the detection from total energy,AD stands for the acoustic detection.
2. If ADi0 = 1, check the spectrum distribution. If the spectrum distribution is similar to the spectrum

distribution of the target we are detecting, don’t change the set ofADi0, otherwise, setADi0 = 0; (Here,
we just compare the ranking of the measured sub-band energy components with the ranking of the sub-band
energy components of the detecting target. If the ranking of measured energy components is the same as the
ranking of the particular target sub-band energy component, we treat it as similar; otherwise, we treat it as
non-similar).

3. For sub-band j, useSE CFARdetector to detect the target based on the sub-band j’s energy, and get the
detection resultADij , j = 1, 2, ...M . M is the number of sub-band we choose forSE CFARdetection.

4. Detecting the target based on other modality energy, such as seismic energy or PIR energy respectively,
and get the detection resultsSDi andPDi.

5. Node i sendsADij andSDi, PDi to the manager node for all j. Manager node will use certain fusion
algorithm to fuse all these detection results.

C. Region Fusion Detection

In above, we introducedFTE CFARdetection,SE CFARdetection andMME CFARdetection. In this section,
we will describe how manager node uses these node detection results to perform region based target detection.

The manager node first uses majority voting to get the detection results for each modality and each acoustic
sub-band detection. For example, in region 1, if there are more than N/2 nodes reportFTE CFARdetection,
where N is the number of detection node in region 1, the manager node judges thatFTE CFARdetection
for region 1 is 1. Similarly, for acoustic sub-bandj detection, suppose there are less than N/2 nodes report
detection, manager node considers the acoustic sub-bandj detection in this region is 0. So does seismic
modality detection. PIR sensor is special, manager node announces PIR detection if there is more than 1
PIR detection. After that, manager node uses different weights for different modality and different sub-band
acoustic energy to fuse their detection results. If the fusion result announces that targets are in the region,
acoustic localization algorithm is activated and performed to further locate the targets in the region. Fig. 3
shows the overall picture of region based fusion detection.

III. A COUSTICSUB-BAND ENERGY BASED SOURCELOCALIZATION

Localization algorithm is executed when targets are detected in the region. In this section, we will describe
acoustic sub-band energy based source localization algorithm.

In [9], it is derived that, when sound propagates in free and homogenous space and the targets are pre-
detected to be in a certain region of the sensor field, the acoustic energy decay function can be modelled by
the following equation:

yi(n) = ysi(n) + εi(n) = gi

K∑

j=1

Sj(n)
‖ ρj(n)− ri ‖2 + εi(n) (1)
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Fig. 3. Flowchart of region fusion detection based on the three node detectors

WhereK is the number of targets detected in the region.yi(n) is the acoustic energy received by theith

sensor.ysi(n) is the the sum of the decayed energy emitted from each of theseK targets toith sensor (i.e.
energy sources).εi(n) is a perturbation term that summarizes the net effects of background additive noise and
the parameter modelling error.gi andri are the gain factor and location of theith sensor,Sj(n) andρj(n)
are respectively, the energy emitted by thejth source (measured at1 meter from the source) and its location
during nth time interval.N is the number of sensors in the activated region,p is the location dimension.

The probability distribution ofεi(n) can be modelled well with an independently, identically distributed
Gaussian random variable when the time windowT for averaging the energy is sufficiently large, i.e,T >
40/fs, wherefs is the sampling frequency [9]. The mean and variance of eachεi(n), denoted byµi(n) (> 0)
andσ2

i (n), can be empirically estimated from ourCFARdetector that we described previously.

A. Maximum Likelihood (ML ) Estimation with Projection Solution

Define

Z =
[ y1−µ1

σ1

y2−µ2
σ2

. . . yN−µN

σN

]Γ
(2)

Equation(1) can be simplified as:

Z = GDS+ξ = HS+ξ (3)

Where:

S =
[

S1 S2 · · ·SK

]Γ
(4)

H = GD (5)

G = diag
[ g1

σ1

g2
σ2

. . . gN

σN

]
(6)

D =




1
d2
11

1
d2
12

. . . 1
d2
1K

1
d2
21

1
d2
22

. . . 1
d2
2K

...
...

. . .
...

1
d2

N1

1
d2

N2
. . . 1

d2
NK




(7)

dij = |ρj − ri| is the Euclidean distance between theith sensor and thejth source.
ξ = [ξ1 ξ2 ... ξN ]T , whereξi is independent Gaussian noise∼ N(0, 1)
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The unknown parametersθ in the above function is:

θ =
[

ρT
1 ρT

2 · · · ρT
K S1 S2 · · · SK

]T

The log-likelihood function is:

`(θ) =
−1
2
‖ Z−GDS ‖2 (8)

Given the log-likelihood functioǹ(θ) denoted as equation (8),ML estimations of the parametersθ are the
values that maximizè(θ), or equivalently, minimize

Ł(θ) =‖ Z−GDS ‖2 (9)

Equation (9) hasK(p +1) unknown parameters, there must be at leastK(p +1) or more sensors reporting
acoustic energy readings to yield an unique solution to this nonlinear least square problem.

Define pseudoinverse ofH as H†, projection matrix ofH as PH , and perform reduced SVD ofH, we
have:

H† =
(
HT H

)−1
HT (10)

PH = H(HTH)−1HT = UH UT
H (11)

H = GD = UHΣHVT
H (12)

Set ∂L
∂S = 0, we have:

S = H†Z (13)

Insert (13) into the cost function (9), we get modified cost function as follows:

arg MIN︸ ︷︷ ︸
{ρ1,ρ2,...ρk}

L = arg MIN︸ ︷︷ ︸
{ρ1,ρ2,...ρk}

(
ZT (I−PH)T (I−PH)Z

)

= arg MAX︸ ︷︷ ︸
{ρ1,ρ2,...ρk}

(
ZT PT

HZ
)

= arg MAX︸ ︷︷ ︸
{ρ1,ρ2,...ρk}

ZT UHUT
HZ (14)

For single source,j = 1,

H =
[

g1

σ1 d2
1

,
g2

σ2 d2
2

, · · · , gn

σn d2
n

]T

,

UH =
H

‖ H ‖
Exhaustive search can be used to get the source location to maximize function (14). However, the com-

putation complexity is very high. For example, suppose our detected search region is128 × 128, if we use
exhaustivesearch using the grid size of4 × 4, we need1024K times of search for every estimation point,
whereK is the number of the targets. Rather, we can use Multi-Resolution (MR) search to reduce the number
of search times. For example, we can use the search grid size16 × 16, 8 × 8, 4 × 4 sequentially. Then, the
number of search times is reduced to64K + 2 ∗ 4K . For two targets, it needs4128 search times usingMR
search with this search strategy and10242 search times usingexhaustivesearch to get one estimation. We
can further reduce the number of search times by reducing our search region based on the previous location
estimation, the time interval between two localization operation, possible vehicle speed and estimation error.
In our experiment, all these conditions are used. The search area we used for theprojection solution is
(xi − 32, xi + 32) × (yi − 32, yi + 32), where(xi, yi) is the previous estimation location of theith target.
Therefore, for single target, we need only24 search; for two targets, we need288 search for every localization
estimation, which is feasible for our distributed wireless networking system.
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B. Nonlinear Least Square (NLS) Estimation for single Target Localization

When there is only one target in the region, by ignoring the additive noise termεi in the equation (1), we
can compute the energy ratioϕij of the ith and thejth sensors as follows:

ϕij =
(

yi/yj

gi/gj

)−1/2

=
‖ ρ− ri ‖
‖ ρ− rj ‖ (15)

Hereρ denotes the single target location. Other parameters are the same as what described before.
Note that by sorting the calibrated energy readingsyi/gi, for 0 < ϕij 6= 1, all the possible source coordinates

ρ that satisfy equation (15) reside on a p-dimensional hyper-sphere described by the equation:

‖ ρ− cij ‖2= ζ2
ij (16)

Where the centercij and the radiusζij of this hyper-sphere associated with sensor i and j are given by:

cij =
ri − ϕ2

ijrj

1− ϕ2
ij

, ζij =
ϕij ‖ ri − rj ‖2

1− ϕ2
ij

(17)

If ϕij = 1, the solution of equation (15) form a hyper-plane betweenri andrj , i.e.:

ρ(t)ιij = τij (18)

Whereιij = ri − rj , τij = |ri|2−|rj |2
2

So far, we show that, for single target at noiseless situation, each energy ratio dictates that the potential
target location must be on a hyper-sphere or a hyper-plane within the sensor field. With noise taken into
account, the target location is solved as the position that is closest to all the hyper-spheres and hyper-planes
formed by all energy ratios in the least square sense, i.e., the single target location is solved by minimizing
the following cost function:

J(ρ) =
L1∑

l1=1

(|ρ− cl1 | − ζl1)
2 +

L2∑

l=12

(
ιT
l2ρ− τl2

)2
(19)

WhereL1 + L2 = L, L is the pairs of energy ratios can be computed in our sensor field,l1 and l2 are
indices of the energy ratios computed between different pairs of sensor energy readings.L1 and L2 are the
number of hyper-spheres and the number of hyper-planes respectively.

Again, exhaustive search,MR search can be used to solve thisNLSestimation.

C. Sub-band Energy Based Location Estimation

While region-based fusion detection based on the node detection results fromFTE CFARdetector,SE CFAR
detector andMM CFARdetector can filter out a large amount of false alarms caused by pure strong background
noise and therefore, localization algorithm won’t be executed by the manager node, there are cases that targets
are in the region, but background is noisy. In such cases, localization algorithm will be executed. However, the
measured acoustic signals are quite noisy and if we use these signals to perform our energy based localization
algorithm, the location results are no longer the true target location. To address this problem, we use sub-band
energy to estimate the possible source location candidates and then, use sequential bayesian decision to identify
the most probably location candidate.

When signal propagates in the air, signal decay factor may be different at different frequency range. Typically,
decay factor for high frequency components of a signal is higher than that for low frequency components. In
many real applications, signal is band limited, and the dominant frequency range of a signal is not broad. For
example, the dominant frequency range for AAV acoustic signal is between 0HZ and 500HZ. The dominant
frequency range for DW acoustic signal is between 0HZ and 200HZ. As a results, we can assume that the
decay factor in these dominant frequency range is constant. In our model, we assume that the sub-band energy
decay factor is 2 for all the dominant frequency components of the target signal. Another assumption in our
sub-band energy based localization is that we assume each frequency component of a signal is independent
and won’t interfere with each other when propagating in the air. Besides, we assume frequency components
of the signal won’t be changed by propagating in the air.
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Based on above two assumptions, we can use sub-band energy decay model to estimate the target location
candidates using different sub-band energies. To do this, we can still use the same energy decay function
denoted as equation (1). However, the measurement energyyi should be replaced by sub-band energyyik

,
source energySj is replaced bySjk

and noise energyξi is replaced byξik
. Here yik

stands for thekth

sub-band energy component measured by theith sensor.Sjk
stands for thekth sub-band energy component

for jth source.ξik
stands for thekth sub-band energy component for noise energyξi. ξik

is assumed to be
Gaussian distributed with meanµik

and varianceσik
. µik

andσik
are estimated by theith sensor node using

SE CFARdetector.
Using the algorithm described in the previous section forith sub-band energy decay function, we get target

location candidateΓi and source sub-band componentSSi as:

Γi(n) = [ρT
1 ρT

2 · · · ρT
K ]Ti (n) (20)

SSi(n) = [S1i
(n), S2i

(n), ..., SKi
(n)]T (21)

wherei denotes the sub-band range i, K stands for number of target sources, and n denotes the time period
n.

IV. L OCATION IDENTIFICATION

Using sub-band energy based localization algorithm, we get the target location candidatesΓi(n) and source
sub-band componentSSi(n) at any time intervaln. We would like to identify which location candidate is the
most probable target location.

Before we describe the location identification algorithm, we clarify here that in our whole collaborative
target detection and localization algorithm, target tracking is an important step. The tracking algorithm is
implemented using the standard Kalman filter, which uses the localization results and previous tracking results
to predict the target location at the next time step. Note that Kalman filter is a sequential bayesian estimator
when we assume that noise is Gaussian.

To identify which sub-band localization result is the most probable target location, we need to separate
the situation into two phases. One phase is at the stage that target detection and localization estimation is
not guaranteed to be accurate and robust. Therefore, location prediction using Kalman filter which uses the
localization results is also not guaranteed to be accurate. We call it as initialization phase. Another phase is the
robust phase. At this phase, the localization estimation is robust. Prediction based on the localization results
is also robust.

DenoteΓ(n) as the identified target location at time n,Γ̂(n) as the predicted target location from Kalman
filter. At the robust phase, we can assume that real target location at time stepn is Gaussian distributed with
meanΓ̂(n) and variancêΣ(n). Identification of the target location at this robust phase is performed as follows:

Γ(n) = Γi∗(n) (22)

Wherei∗ = arg MAX︸ ︷︷ ︸
{i}

P (Γi(n)|Γ̂(n))

The identified target location is then feeded into the Kalman filter. Kalman filter uses this data to predict
the target location at the next time step, i.e.,

Γ̂(n + 1) = f(Γ(n) Γ(n-1) ... Γ(n-L+1)) (23)

wheref is the function of Kalman filter.̂Σ(n + 1) is predicted as follows:

Σ̂(n + 1) = (1− 1
L

)Σ̂(n) +
1
L

(Γ̂(n)− Γ(n))(Γ̂(n)− Γ(n))T (24)

Define:
X(n) = [Γ(n) Γ(n-1) ... Γ(n-L+1)]T

X̂(n) =
[
Γ̂(n) Γ̂(n− 1) ... Γ̂(n− L + 1)

]T
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R(n) =
1

A2

(
X(n)− X̂(n)

)T (
X(n)− X̂(n)

)

We judge target localization goes into the robust phase if:

R(n) ∈ T 2
α(L)

Whereα is the confidence level we choose for theT 2 test.A is the accepted error bound for a particular
application. For example, in our AAV target localization application, A can be chosen as 30. L is the freedom
of χ2 distribution for R(n).

If R(n) doesn’t satisfy aboveT 2 test, localization algorithm goes into the initial phase. At this phase, the
location is identified by trying to find a trajectory from timen− L + 1 to current timen that will minimize
the cost functionl, i.e.,

[Γ(n),Γ(n− 1), ...,Γ(n− L + 1)] =
[
Γi∗0 (n),Γi∗1 (n− 1), ...,Γi∗

L−1
(n− L + 1)

]
(25)

Where[i∗0, i
∗
1, ..., i

∗
L−1] = arg Min︸ ︷︷ ︸

{i0,i1,...,iL−1}

{
l(Γi0(n),Γi1(n− 1), ...,ΓiL−1(n− L + 1))

}

The cost functionl is defined as square error function, i.e.:

l(Γi0(n),Γi1(n− 1), ...,ΓiL−1(n− L + 1)) =
L−1∑

j=0

lij (n− j) (26)

Where:

lij (n− j) = |Zij (n− j)− Ẑij (n− j)|2

is the square error between the normalized measured sub-bandij ’s energy and the sum of decayed sub-band
ij ’s energy of all sources, assuming the sources sit at the positions estimated from theij sub-band energy
based localization function, i.e.,

Zij (n− j) =
[

y1ij
−µ1ij

σ1ij

y2ij
−µ2ij

σ2ij

. . .
yNij

−µNij

σNij

]Γ

(n− j) (27)

Ẑij (n− j) = Gij (n− j)D(n− j)SSij (n− j) (28)

Where:

Gij (n− j) = diag
[

g1
σ1ij

g2
σ2ij

. . . gN

σNij

]
(n− j)

Dij(n− j) =




1
d2
11ij

1
d2
12ij

. . . 1
d2
1Kij

1
d2
21ij

1
d2
22ij

. . . 1
d2
2Kij

...
...

. ..
...

1
d2

N1ij

1
d2

N2ij

. . . 1
d2

NKij




(n− j)

dklij
(n−j) = |ρlij

(n−j)−rk| is the Euclidean distance between thekth sensor and the location oflth source
estimated by theij ’th sub-band energy based localization function.ρlij

(n− j) = Γij{(l − 1)p : lp}(n− j),
p is the location dimension.n − j stands for the(n − j)th time interval.Γij andSSij are theithj location
candidate andithj source energy component estimated fromithj sub-band energy based localization algorithm.
(See equation 20, 21).
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V. EXPERIMENTS AND EVALUATION

A. Sensor Network Configuration

The raw signals were recorded by 29 sensor nodes deployed along the road in the sensor field, CA in
November 2001, sponsored by the DARPA ITO SensIT project. Each sensor node is composed of a palm with
wireless radio link, an acoustic sensor, a seismic sensor, a PIR sensor and three coaxial cables which connect
the sensors to the palm. The data we used to evaluate our collaborative source detection and localization
algorithms were taken from 15 sensor nodes recording the acoustic, PIR and seismic signatures of AAV
vehicle going from east to west during a time period of 2 minutes. Fig. 4 shows the road coordinates and
sensor node positions, both supplied by the global positioning system (GPS). The sensor field is divided into
two regions as shown in Fig. 4. Region 1 is composed of node1, 41, 42, 51, 54, 55, 56, 59, 60, 61. Region 2
is composed of node46, 47, 48, 49, 50, 52, 53, 58. In region 1, node 1 is chosen as manager node, others are
detection node. In region 2, node 58 is chosen as manager node, others are detection node. The sampling rate
is fs = 4960Hz. The energy is computed by averaging the T=0.75sec non-overlapping data segment (3720 data
points).

B. Target Detection and Localization

Fig. 5 and Fig. 6 show theFTE CFAR, SE CFAR, MME CFARnode detection results and final region fusion
detection results. The constantC we choose for theCFARdetector areC = [3.5, 3.5, 5, 5, 10, 10] for acoustic
total energy, sub-band 2, sub-band 1, sub-band 3, seismic and PIR detection respectively.α = 1/100 (i.e,
average length=100) for all of the threeCFAR detector. The weights we used for the region fusion decision
of the filtered total acoustic energy based detection, acoustic sub-band 2 energy based detection , acoustic
sub-band 1 energy based detection, acoustic sub-band 3 energy based detection, seismic energy based detection
and PIR energy based detection are 0.3,0.4,0.2,0.1, 0.5, 0.1 respectively. If the region fusion result is bigger
than or equal to 0.5, manager node announces the target.

With the fusion of the above three different node detection results, we dramatically decrease the probability
of miss detection and fault alarm. Table 1 shows the performance improvement by using the fusion of three
detector results in stead of using the acoustic energy based CFAR detector results only. Here, we define
sensitivity as the rate of detection when target is in the region. We define specifity as the rate of correct
announcement when the region announces the target detection.

Table 1. Sensitivity and Specifity of Target Detection

Target Detection Approach Region Sensitivity Specifity

Acoustic Energy Based CFAR Node Detector + Region Fusion
Region1
Region2

100
64

74.6
90

FTE CFAR, SE CFAR, MME CFARNode Detection + Region Fusion
Region1
Region2

100
89

86.3
100
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Fig. 5. FTE CFAR, SE CFAR, MME CFARnode detection and region fusion detection for region 1 (AAV)
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Fig. 6. FTE CFAR, SE CFAR, MME CFARnode detection and region fusion detection for region 2 (AAV)

Fig. 7 shows the AAV ground truth and the localization results based on the normal energy based localization
(EBL) approach and identified sub-band energy based localization approach.ML algorithm with projection
solution andMR search is used for both of the approaches. The search grid size we chose is: 4*4, 2*2, 1*1.

To evaluate this new collaborative source localization algorithm, we compute the localization errors defined
as the Euclidian distance between the location estimations and the true target locations. The true target location
can be determined since they must be positioned on the target trajectory which can be extracted from GPS log.
These localization errors are then grouped into different error range, i.e.,0 ∼ 10, 10 ∼ 20, ...40 ∼ 50,≥ 50.
We call it as error histogram of our localization algorithm. Fig. 8 shows this localization error histogram
for AAV localization. Fig. 7 and Fig. 8 show that identified sub-bandEBL approach greatly improves the
performance of localization estimation compared with the normalEBL approach in the noisy environment.

C. Discussion

From experiment, we can see that, although the set of data we used is very noisy, the new approach using
FTE CFARdetector,SE CFARdetector,MME CFARdetector and region fusion decision based on these three
detection results still provides very good performance of target detection. The false alarm and miss detection
decrease a lot compared to the region fusion decision based on normalCFAR node detection only. Since
localization algorithm is executed only when targets are detected in the region, and locations are searched in
the detected region which minimize the cost function, decreasing of the miss detection and false alarm increases
the localization performance in the sense that localization is searched in the correct region. Meanwhile, sub-
band energy based location candidates estimation and location identification from those candidates provide a
way to filter out the fault location estimation, and therefore provide better location estimation. These facts
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imply that sub-band energy distribution is an important characteristics that can be used to make our detection
and localization algorithm more robust in the noisy environment.

In fact, using sub-band energy based target detection and localization is a way of short-time frequency
analysis. This is because we separate the signal into different sub-band space. Meanwhile, we use certain
time window to calculate these sub-band energies. The algorithm also uses the space information of the sensor
network system because the algorithm uses the sensor locations for location candidates estimation. Information
of signal variations with time is also used by using the sequential bayesian estimation for identification of
the target candidate location. Therefore, this new approach uses almost all the information we have, from
short-time sub-band energy component, sensor network space information to signal variation information. Of
course, compared to the normal energy based detection and localization algorithm, this new approach need
to send more data to the manager node, i.e., its bandwidth is M times of the normal energy based algorithm,
where M is the number of sub-band we use. However, this new approach still need relatively less bandwidth
compared with other available method since the detection nodes report the data to the manager node only at
every time period rather than at every sampling instant.

VI. CONCLUSION

Sub-band energy based collaborative target localization in wireless sensor network system has been pre-
sented. Three steps including target detection, target location candidates estimation and target location identi-
fication have been performed to realize the task of target localization.FTE CFARdetector,SE CFARdetector,
MME CFARdetector are introduced for node detection. Region based target detection based on these three
detection results is provided. Sub-band acoustic energy based algorithm is performed to estimate the target
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location candidates when targets are detected in the region. Sequential bayesian estimation is used to identify
the most possible target location from these candidate locations.

As discussed in section V-C, this new approach is an approach of short-time frequency analysis. It also
uses the space information of the sensor network. Besides, it uses the sequential signal information for the
location candidate identification. Therefore, this new approach uses almost all the information we have, from
short-time sub-band energy component, sensor network space information to signal variation information.

Experiment has been conducted to evaluate the performance of this new approach for target detection and
localization. Results show that this approach decreases a lot of false alarm and miss detection. Therefore,
target localization algorithm can be searched in the more correct region. It also improves the performance of
target localization compared to the normal energy based localization algorithm.

Sub-band energy based localization need more bandwidth compared to the normal energy based localization
algorithm. However, it still needs less communication bandwidth compared to other approach since each sensor
reports the data to the manager node only at every time period rather than at every sampling instant. Sub-band
we choose for detection and localization is based on the targetPSDdistribution characteristics.
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