
Embedded Systems

Ch 11B
Network Interface

Byung Kook Kim
Dept of EECS

Korea Advanced Institute of Science and Technology



Overview

Embedded Systems, KAIST 2

1. Introduction
2. RS-485
3. Controller Area Network (CAN)
4. Ethernet
5. CAN Protocol
6. Ethernet Protocol
7. Socket Programming



5. CAN Protocol

Embedded Systems, KAIST 3

Controller Area Network (CAN)
A small broadcast network
Local bus topology with outputs of all stations are wire-ANDed by 
the bus.
Message with 11 (or 29) bit identifier and 1 – 8 bytes of data.
Two-wire, half duplex, high-speed network system and is well 
suited for high speed applications using short messages. 
Its robustness, reliability and the large following from the 
semiconductor industry are some of the benefits with CAN.
CAN can theoretically link up to 2032 devices (assuming one node
with one identifier) on a single network. 

Practical limitation of the hardware (transceivers), it can only link up 
to 110 nodes (with 82C250, Philips) on a single network. 

High-speed communication rate up to 1 Mbits/sec thus allows 
real-time control.
Error confinement and the error detection feature: reliable in 
noise critical environment.



CAN Protocol (II)

Embedded Systems, KAIST 4

CAN networking
CAN is a multimaster network using CSMA/CD+AMP (Carrier 
Sense Multiple Access/Collision Detection with Arbitration on 
Message Priority).

Before sending a message the CAN node checks if the bus is busy.
It also uses collision detection.
Data messages transmitted from any node on a CAN bus do not 
contain addresses of either the transmitting node, or of any intended 
receiving node.

The content of the message is labeled by an identifier that is 
unique   throughout the network. 

All other nodes on the network receive the message and each 
performs an acceptance test on the identifier to determine if the 
message, and thus its content, is relevant to that particular node.
If the message is relevant, it will be processed; otherwise it is 
ignored.



CAN Protocol (III)

Embedded Systems, KAIST 5

Non-destructive contention-based bus arbitration (CAN 1.0)
All nodes are allowed to start the transmission of a frame after the bus is idle.
More than one node are starting transmission at the same time.
Each node monitors the bus during transmission of the identifier field and the 
RTR bit. 
As soon as it detects a dominant bit while transmitting a recessive bit it 
releases the bus, immediately stops transmission and continues receiving the 
frame.



CAN Protocol (IV)

Embedded Systems, KAIST 6

The format of a standard CAN 2.0A message: 7 bit fields 
A Start of Frame (SOF) field. This is a dominant (logic 0) bit that 
indicates the beginning of a message frame.
An Arbitration field:

An 11 bit message identifier
The Remote Transmission Request (RTR) bit. 

A dominant (logic 0), RTR bit indicates that the message is a Data Frame. 
A recessive (logic 1) value indicates that the message is a Remote Transmission 
Request (otherwise known as Remote Frame).
A Remote Frame is a request by one node for data from some other node on the  
bus. Remote Frames do not contain a Data Field. The Data Length Code specifies 
the number of bytes of data in the requested Message Frame.



CAN Protocol (V)

Embedded Systems, KAIST 7

The format of a standard CAN 2.0A message (II) 
A Control Field containing six bits:

Two dominant bits (r0 and r1) that are reserved for future use, and
A four bit Data Length Code (DLC). The DLC indicates the number of bytes in 
the Data Field that follows

A Data Field, containing from zero to eight bytes.
The CRC field, containing a fifteen bit cyclic redundancy check code and 
a  recessive delimiter bit
The ACKnowledge field, consisting of two bits. 

The first is the Slot bit which is transmitted as a recessive bit, but is 
subsequently over written by dominant bits transmitted from all other nodes 
that successfully receive the message. 
The second bit is a recessive delimiter bit.

The End of Frame field, consisting of seven recessive bits.
The INTermission field consisting of three recessive bits.

After the three bit INTermission period the bus is recognized to be free. 
Bus Idle time may be of any arbitrary length including zero.



CAN Protocol (VI)

Embedded Systems, KAIST 8

The CAN 2.0B format
In Version 2.0B the Arbitration field contains two identifier bit fields. 

The first (the base ID) is eleven (11) bits long for compatibility with Version 
2.0A. 
The second field (the ID extension) is eighteen (18) bits long, to give a total 
length of twenty nine (29) bits.
The distinction between the two formats is made using an Identifier 
Extension  (IDE) bit.

A Substitute Remote Request (SRR) bit is included in the Arbitration 
Field. 

The SRR bit is always transmitted as a recessive bit: Ensure that, in the case 
of arbitration between a Standard Data Frame and an Extended Data Frame, 
the  Standard Data Frame will always have priority if both messages have the 
same   base (11 bit) identifier.



CAN Protocol (VII)

Embedded Systems, KAIST 9

Sophisticated error detection and error confinement 
mechanisms

Very sophisticated error detection and error confinement 
mechanisms:  resulting in a low residual probability of not detected 
errors.

Monitoring of the transmitted bit level by the transmitting node. 
If  the monitored bit level is different from the bit level that is sent, a 
bit error is detected. 
With this mechanism all globally effective bus errors are detected.

Checking of fixed format elements and by checking of the CRC 
segment through a receiver.

Providing a means for detecting of only locally effective errors with a 
very high probability.



CAN Protocol (VIII)

Embedded Systems, KAIST 10

Error signaling instead of message confirmation 
provides system-wide data consistency and 
low error recovery times

Only a corrupted message is signaled by means of an error frame.

An error frame is transmitted as soon as an error condition is 
detected by a transmitting or  receiving node: The transmitted 
message is destroyed and so network-wide data consistency provided.

If a transmitting node sends or receives an error frame it 
automatically starts retransmission of the corrupted message: 
Provides a very short error recovery time which is much lower than 
that of competing protocols.

Counter for counting of transmission and receiving errors and for 
performing a sophisticated error management.



6. Ethernet Protocol

Embedded Systems, KAIST 11

Ethernet technology
Wire: thick coaxial, thin coaxial, twisted pair, optical fiber.

Connector: BNC for thinnet, AUI connector for thicknet, RJ45 for 
10Base-T.

Properties: 
Broadcast bus technology: all tranceivers receive every transmission.

Best effort delivery: message may be lost.

Distributed access control: Carrier Sense Multiple Access with 
Collision Detect (CSMA/CD).

Collision: binary exponential back-off policy.



Ethernet Protocol (II)

Embedded Systems, KAIST 12

Ethernet Frames (Packets) Format
Variable length: min 64 octets (bytes), max 1518 octets.

Destination Source  Frame   
Preamble  Address   Address Type           Frame Data           CRC

Frame Type: 
0x806 ARP/RARP
0x800 IP

8 octets 6 octets 6 octets 2 64-1500 octets 4



Ethernet Protocol (III)

Embedded Systems, KAIST 13

IP (Internet Protocol) address
A connection to a network. Not a host.
32 bit for IPv4. 128 bit for IPv6.
Dotted decimal notation: 143.248.150.1 



Ethernet Protocol (IV)

Embedded Systems, KAIST 14

Address Resolution Protocol (ARP)
Allow a host to find the physical address of a target host, given only the 
target’s IP address.

Hardware type: 1 for Ethernet. Protocol type: 0x0800
HLEN 6 (Hardware Address Length); PLEN 4 Protocol Address Length)
Operation: 1 ARP request, 2 ARP reply, 3 RARP request, 4 RARP reply.
Sender supplies Sender Hardware Address, Sender IP, and Target IP.
ARP/RARP message format:



Ethernet Protocol (V)

Embedded Systems, KAIST 15

IP (Internet Protocol) Datagram Format
VERS: 4 (IPv4). 
HLEN: Header length in 32-bit words (min 5).
Type of Service: Precedence (3 bits: 0 to 7), D (low delay), T (high 
throughput), R( high reliability), 2 unused bits.
TOTAL LENGTH: Length of IP datagram in bytes (65536 max).



Embedded Systems, KAIST 16

Ethernet Protocol (VI)

IP Datagram Format (Cont’d)
Identification: Identification number
FLAGS: 

Bit 1: Do not fragment
Bit3: More fragments

Fragment Offset: Offset for fragmented data.
Protocol: Specifies high-level protocol.

0 RAW, 1 ICMP, 2 IGMP, 6 TCP, 8 EGP, 11 UDP, 59 OSPF.
Time-to-Live: How long the datagram is allowed to remain (in 
seconds).

Discard the datagram if the TTL field becomes zero.
Header Checksum: Checksum of header (not data) as 16-bit integers.

Adding using 1’s complement arithmetic.
One’s complement of the sum.



Ethernet Protocol (VII)

Embedded Systems, KAIST 17

UDP (User Datagram Protocol) Format
Provide an unreliable connectionless delivery service.

Uses IP to carry messages, but adds the ability to distinguish among multiple 
destinations within a given computer.

4 16-bit fields.
Source Port: 16-bit UDP protocol source port number.
Destination Port: 16-bit UDP protocol destination port number.
UDP Message Length: Count of octets in the UDP datagram including 
header and data.
UDP checksum: Optional (0: checksum not computed).

Only way to guarantee that data has arrived (No IP data checksum).



Ethernet Protocol (VIII)

Embedded Systems, KAIST 18

TCP (Transmission Control Protocol) Format
Provide stream oriented, connection oriented, buffered data transfer 
with acknowledge, time-out, and retransmission.



Embedded Systems, KAIST 19

Ethernet 
Protocol (IX)

TCP Finite 
State Machine



Ethernet Protocol (X)

Embedded Systems, KAIST 20

Protocol Hierarchy



Ethernet Protocol (XI)

Embedded Systems, KAIST 21

Data Encapsulation

TCP 
Header
>=20B

TCP Data Area

UDP 
Header

8B
UDP Data Area

IP 
Header
>=20B

IP Data Area

Frame 
Header 

22B

Frame Data Area
48-1500B

CRC
4B



Embedded Systems, KAIST 22

Ethernet Protocol (XII)
ISO 7-Layer Reference Model

Layer ISO-7 TCP/IP

7 Application Application

6 Presentation

5 Session

4 Transport

3 Network Internet

2 Data Link Network Interface

1 Physical Hardware 
Connection Hardware

Transport

Network-Specific 
Frames

IP Datagrams

Transport Protocol 
Packets

Message or 
streams



7. Socket Programming

Embedded Systems, KAIST 23

What is a socket?
A  way to speak to other programs using standard Unix file 
descriptors.

A file descriptor is simply an integer associated with an open file. 

But that file can be a network connection, a FIFO, a pipe, a terminal, 
a real on-the-disk file, or just about anything else.

Make a call to the socket() system routine. 
Returns the socket descriptor, and you communicate through it using 
the specialized send() and recv() socket calls.

You can use normal read() and write(), but send() and recv() offer 
much greater control over your data transmission.



Socket Programming (II)

Embedded Systems, KAIST 24

Two types of internet sockets
Stream sockets

Reliable two-way connected communication streams. 
Ordered
Error-free

telnet uses stream sockets. 
All the characters you type need to arrive in the same order you
type them, 

Web browsers use the HTTP protocol which uses stream 
sockets to get pages.
Use a protocol called "The Transmission Control Protocol", 
otherwise known as "TCP" (see RFC-793 for extremely 
detailed info on TCP.) 

TCP makes sure your data arrives sequentially and error-free.

http://www.rfc-editor.org/rfc/rfc793.txt


Socket Progrmming (III)

Embedded Systems, KAIST 25

Two types of internet sockets (Cont’d)
Datagram sockets

Connectionless
if you send a datagram, it may arrive. It may arrive out of order. 
If it arrives, the data within the packet will be error-free.

Use the "User Datagram Protocol", or "UDP" (see RFC-768.)
You don't have to maintain an open connection as you do 
with stream sockets. 

You just build a packet, slap an IP header on it with destination 
information, and send it out.
No connection needed. 
They are generally used for packet-by-packet transfers of 
information. 

Sample applications: tftp, bootp, etc.

http://www.rfc-editor.org/rfc/rfc768.txt


Socket Programming (IV)

Embedded Systems, KAIST 26

Structs
1. a socket descriptor.

int (Just a regular int).
2. Struct sockaddr.

Holds socket address information for many types of sockets:
struct sockaddr { 

unsigned short sa_family;     // address family, AF_xxx
char sa_data[14]; // 14 bytes of protocol address

}; 
sa_family can be a variety of things, but it'll be AF_INET.
sa_data contains a destination address and port number for the socket.

3. A parallel structure: struct sockaddr_in ("in" for "Internet".)
struct sockaddr_in { 

short int sin_family; // Address family 
unsigned short int sin_port;       // Port number 
struct in_addr sin_addr;       // Internet address unsigned 
char sin_zero[8]; // Same size as struct sockaddr

};
This structure makes it easy to reference elements of the socket address. 

4. Internet address (a structure for historical reasons) 
struct in_addr { unsigned long s_addr; // that's a 32-bit long, or 4 bytes }; 



Socket Programming (V)

Embedded Systems, KAIST 27

System Calls
socket()--Get the File Descriptor!

bind()--What port am I on?

connect()--Hey, you!

listen()--Will somebody please call me?

accept()--"Thank you for calling port 3490."

send() and recv()--Talk to me, baby!

sendto() and recvfrom()--Talk to me, DGRAM-style

close() and shutdown()--Get outta my face!

getpeername()--Who are you? 

gethostname()--Who am I? 



Socket Programming (VI)

Embedded Systems, KAIST 28

A simple stream client
Get the host information
Open stream socket

-- Connect to the server

-- Receive a message 
from the socket
Print it
Close the socket

A simple stream server

Open stream socket
Set socket option
Bind socket_id to socket 
structure
Listen
Loop

Accept incoming 
connection request --
Child process:

Send a message to 
the socket --



References

Embedded Systems, KAIST 29

CAN Protocol
Search Internet

Ethernet Protocol & Socket programming
Douglas Comer, “Internetworking with TCP/IP. Volume 1: 
Principles, Protocols, and Architecture”, Third Ed., Prentice Hall, 
1995.
Search Internet.


	Embedded SystemsCh 11BNetwork Interface
	Overview
	5. CAN Protocol
	CAN Protocol (II)
	CAN Protocol (III)
	CAN Protocol (IV)
	CAN Protocol (V)
	CAN Protocol (VI)
	CAN Protocol (VII)
	CAN Protocol (VIII)
	6. Ethernet Protocol
	Ethernet Protocol (II)
	Ethernet Protocol (III)
	Ethernet Protocol (IV)
	Ethernet Protocol (V)
	Ethernet Protocol (VI)
	Ethernet Protocol (VII)
	Ethernet Protocol (VIII)
	Ethernet Protocol (IX)
	Ethernet Protocol (X)
	Ethernet Protocol (XI)
	Ethernet Protocol (XII)
	7. Socket Programming
	Socket Programming (II)
	Socket Progrmming (III)
	Socket Programming (IV)
	Socket Programming (V)
	Socket Programming (VI)
	References

