
Embedded Systems

Ch 12A
ARM Assembly

Language

Byung Kook Kim
Dept of EECS

Korea Advanced Institute of Science and Technology

Overview

Embedded Systems, KAIST 2

1. Introduction

2. Data Processing Instructions

3. Data Transfer Instructions

4. Control Flow Instructions
5. Writing Simple Assembly Language Programs

References
Steve Furber, “ARM System-on-chip architecture”, Second
Edition, Addison Wesley, 2000.

1. Introduction

Embedded Systems, KAIST 3

ARM processor programming
C, C++, or assembly language

Assembly language programming
Think at the level of individual machine instruction
Assembler: computer program converting assembly language
programs into machine language programs

Binary-level instruction encoding
Level

User level programming
System level programming: Next chapter

Instruction size
32-bit ARM assembly language
16-bit ARM Thumb instructions

Introduction (II)

Embedded Systems, KAIST 4

ARM data types
8-bit signed and unsigned bytes
16-bit signed and unsigned half-words aligned on 2-byte
boundaries

Some older ARM processors do not have half-word and signed byte
support

32-bit signed and unsigned words aligned on 4-byte boundaries

ARM instruction: 32 bits. Must be word-aligned
Thumb instruction: 16 bits. Must be aligned on 2-byte boundaries

Internal ARM operations
32-bit operands
Byte loaded: Zero or sign-extended. Treated as a 32-bit value.

ARM coprocessor: may support floating-point values.

Introduction (III)

Embedded Systems, KAIST 5

Memory organization
Storing words in a byte-addressed memory

Little-endian: Least significant byte first. Intel. ARM default.
Big-endian: Most significant byte first. Motorola.

half-word4

word16

0123

4567

891011

byte0

byte

12131415

16171819

20212223

byte1byte2

half-word14

byte3

byte6 half-word6

word16

3210

7654

111098

byte3

byte

15141312

19181716

23222120

byte2byte1

half-word12

byte0

byte5 addressaddress

(a) Little-endian memory (b) Big-endian memory
organizationorganization

bit 31 bit 0 bit 31 bit 0

half-word12 half-word14

word8 word8

Introduction (IV)

Embedded Systems, KAIST 6

Privileged modes
Used to handle exceptions and supervisor calls (software
interrupts)
Current operating mode: CPSR [4:0]

Shaded registers replace the corresponding user registers
Current SPSR (Saved Program Status Register) also becomes
available.

CPSR[4 :0] Mo de Us e Reg i s ters
10000 User Normal user code user
10001 FIQ Processing fast interrupts _fiq
10010 IRQ Processing standard interrupts _irq
10011 SVC Processing software interrupts (SWIs) _svc
10111 Abort Processing memory faults _abt
11011 Undef Handling undefined instruction traps _und
11111 System Running privileged operating system tasks user

Introduction (V)

Embedded Systems, KAIST 7

r13_und
r14_und r14_irq

r13_irq

r14_abt r14_svc

usable in user mode

system modes only

r13_abt r13_svc

r8_fiq
r9_fiq

r10_fiq
r11_fiq

r14_fiq
r13_fiq
r12_fiq

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15 (PC)

SPSR_undSPSR_irqSPSR_abtSPSR_svcSPSR_fiqCPSR

svc
mode

abort
mode

irq
mode

undefined
mode

fiq
modeuser mode

Introduction (VI)

Embedded Systems, KAIST 8

Privileged modes (cont’d)
Can only be entered through controlled mechanisms
Allow a fully protected operating system to be built
Can be used to give a weaker level of protection useful for
trapping errant software.

SPSRs
Used to save the state of CSPR when the privileged mode is entered
CSPR restored when exit (resume user program)

Re-entrant privileged software: the CSPR must be copied into a
general register and saved.

2. Data Processing
Instructions

Embedded Systems, KAIST 9

Arithmetic and logic operations on data values in registers
Two operands and one result

Rules
All operands are 32 bits wide and come from registers or

are specified as literals in the instruction itself

The result, if there is one, is 32 bits wide and is placed in a
register

Exception: Long multiply instruction produces a 64-bit result

Each of the operand registers and the result register are
independently specified in the instruction (3-address format).

Data Processing Instructions (II)

Embedded Systems, KAIST 10

Simple register operands
Format: OP_code dest, src1, src2
Ex) ADD r0, r1, r2 ; r0 := r1 + r2

Semicolon (;): Comment (to the right of it)
Easier reading and understanding

May produce a carry output, overflow
Stored in N, Z, C, and V flags in CSPR.

Arithmetic operations
ADD r0, r1, r2 ; r0 := r1 + r2
ADC r0, r1, r2 ; r0 := r1 + r2 + C. Add with carry
SUB r0, r1, r2 ; r0 := r1 – r2
SBC r0, r1, r2 ; r0 := r1 – r2 + C – 1. Subtract with carry
RSB r0, r1, r2 ; r0 := r2 – r1
RSC r0, r1, r2 ; r0 := r2 – r1 + C – 1. Rev sub with carry.

Data Processing Instructions (III)

Embedded Systems, KAIST 11

Simple register operands (Cont’d)
Bitwise logical operations

AND r0, r1, r2 ; r0 := r1 and r2
ORR r0, r1, r2 ; r0 := r1 or r2
EOR r0, r1, r2 ; r0 := r1 xor r2. Exclusive or
BIC r0, r1, r2 ; r0 := r1 and not r2. Bitwise clear

Register movement operations
MOV r0, r2 ; r0 := r2
MVN r0, r2 ; r0 := not r2. Move not (negated)

Compare operations
CMP r1, r2 ; Set CC on r1 – r2. Compare
CMN r1, r2 ; Set CC on r1 + r2. Compare negated
TST r1, r2 ; Set CC on r1 and r2
TEQ r1, r2 ; Set CC on r1 xor r2. Test equal

Data Processing Instructions (IV)

Embedded Systems, KAIST 12

Immediate operands

Constant preceded by ‘#’

ADD r3, r3, #1 ; r3 := r3 + 1

Hexadecimal constant preceded by ‘&’ after the ‘#’

AND r8, r7, #&ff ; r8 := r7[7:0]

Valid immediate values

Immediate = (0 to 255) x 22n, 0<=n<=12.

Data Processing Instructions (V)

Embedded Systems, KAIST 13

Shift register operands
Second operand shifted before
operation

ADD r3, r2, r1, LSL #3 ; r3 :=
r2 + 8 x r1. Logical shift left

Single ARM instruction executed in
a single clock cycle.

Shift value: 0 to 31
Shift operations

LSL: logical shift left by 0 to 31
places; fill LSB with zeros
LSR: Logical shift right by 0 to 31
places; fill MSB with zeros
ASL: Arithmetic shift left; synonym
for LSL.
ASR: Arithmetic shift right by 0 to
31 places; fill MSB with 0/1
ROR: Rotate right by 0 to 31 places;
LSBs to MSBs
RRX: Rotate right extended by 1
place . Operand & C

031

00000

LSL #5

031

 00000

LSR #5

031

 11111 1

ASR #5, negative operand

031

 00000 0

ASR #5, positive operand

 0 1

031

ROR #5

031

RRX

C

C C

Data Processing Instructions (VI)

Embedded Systems, KAIST 14

Setting the condition codes
Data processing instructions: optional
‘S’: Suffix of set condition code

ADDS r2, r2, r0 ; 32-bit carry out -> C.
ADC r3, r3, r1 ; And added into high word. 64-bit add.

Comparison instructions: no option
Arithmetic operation: sets all flags
Logical & move instruction: Set N and Z. Preserve V.

Use of condition codes
C flag: as an input to an arithmetic data processing
Conditional branch instructions.

Data Processing Instructions (VII)

Embedded Systems, KAIST 15

Multiplies
Multiplication

MUL r4, r3, r2 ; r4 := (r3 x r2)[31:0]

Differences
Immediate second operands are not supported
The result register must not be the same as the first source register
If the ‘S’ bit is set, the V flag is preserved. C rendered meaningless.

Alternative form
MLA r4, r3, r2, r1 ; r4 := (r3 x r2 + r1)[31:0]

Multiply by const
ADD r0, r0, r0, LSL #2 ; r0 := 5 x r0
RSB r0, r0, r0, LSL #3 ; r0 := 7 x r0

3. Data Transfer Instructions

Embedded Systems, KAIST 16

Basic forms of data transfer instructions
Single register load and store instructions

Transfer between register and memory
Byte, 16-bit half word, or 32-bit word

Multiple register load and store instructions
Enable large quantities of data to be transferred more efficiently
Used for procedure entry and exit
Save and restore workspace registers
Copy blocks of data around memory

Single register swap instructions
Allow a value in a register to be exchanged with a value in memory
Implement semaphores to ensure mutual exclusion.

Data Transfer Instructions (II)

Embedded Systems, KAIST 17

Register indirect addressing
Use register value as a memory address

LDR r0, [r1] ; r0 := mem[r1]
STR r0, [r1] ; mem[r1] := r0

Initializing an address register
A base register within 4K bytes should be initialized
Pseudo instruction ‘ADR’ computes the offset

Assembler selects the most appropriate ARM instruction (ADD/SUB)
Copy data from TABLE1 to TABLE2

COPY ADR r1, TABLE1 ; r1 points to TABLE1. Label of COPY
ADR r2, TABLE2 ; r2 points to TABLE2

…
TABLE1 ; Source of data

…
TABLE2 : Destination of data

…

Data Transfer Instructions (III)

Embedded Systems, KAIST 18

Using single register load and store instructions
32-bit Load/store address should be aligned on a 4-byte boundary
Modify register ready for the next transfer

COPY ADR r1, TABLE1 ; r1 points to TABLE1. Label of COPY
ADR r2, TABLE2 ; r2 points to TABLE2

LOOP LDR r0, [r1] ; Load first value
STR r0, [r2] ; Store first value
ADD r1, r1, #4 ; Step r1 on 1 word
ADD r2, r2, #4 ; Step r2 on 1 word

; If more go back to LOOP
…

TABLE1 ; Source of data
…

TABLE2 : Destination of data
…

Data Transfer Instructions (IV)

Embedded Systems, KAIST 19

Base plus offset addressing
Pre-indexed addressing (up to 4K bytes add/sub)

LDR r0, [r1,#4] ; r0 := mem[r1+4]
Auto-indexing

LDR r0, [r1,#4]! ; r0 := mem[r1+4]. ‘!’: auto-indexing
; r1 := r1 + 4

Post-indexed addressing
LDR r0, [r1], #4 ; r0 := mem[r1]

; r1 := r1 + 4
Copy program

…
LOOP LDR r0, [r1], #4 ; Load first value & post-indexing

STR r0, [r2], #4 ; Store first value & post-indexing
…

Byte load
LDRB r0, [r1] ; r0 := mem_8[r1]

Data Transfer Instructions (V)

Embedded Systems, KAIST 20

Multiple register data transfer
Any subset (or all) of the 16 registers to be transferred

More restricted addressing modes

Transfer list in {}
LDMIA r1, {r0,r2,r5} ; r0 := mem[r1]

; r2 := mem[r1+4]

; r5 := mem[r1+8]

The lowest register is transferred to/from the lowest address

Including r15 (PC) in the list will cause a change in the control
flow!

Data Transfer Instructions (VI)

Embedded Systems, KAIST 21

Stack addressing
Stack

Last-in-first-out store which supports simple dynamic memory
allocation: Address not known at compile time
Ascending stack: grows up
Descending stack: grows down

Stack pointer
Holds the address of the current top of the stack
Full stack: pointing to the last valid data pushed
Empty stack: pointing to the vacant slot for the next data

ARM support
Full ascending
Empty ascending
Full descending
Empty descending

Data Transfer Instructions (VII)

Embedded Systems, KAIST 22

Block copy addressing
The mapping between the stack and block copy views of the load
and store multiple registers

Ascending Descending
Ful l Empty Full Empty

Increment
Before STMIB

STMFA
LDMIB
LDMED

After STMIA
STMEA

LDMIA
LDMFD

Decrement
Before LDMDB

LDMEA
STMDB
STMFD

After LDMDA
LDMFA

STMDA
STMED

Data Transfer Instructions (VIII)

Embedded Systems, KAIST 23

Multiple register transfer addressing modes

r5
r1

r9’

r0r9

r5
r1
r0

r9’

r9

100016

100c16

101816

100016

100c16

101816

STMIA r9!, {r0,r1,r5} STMIB r9!, {r0,r1,r5}

r1
r5r9

r5
r9

r0
r9’ 100016

100c16

101816

r1
r0r9’ 100016

100c16

101816

STMDA r9!, {r0,r1,r5} STMDB r9!, {r0,r1,r5}

Data Transfer Instructions (IX)

Embedded Systems, KAIST 24

Block copy addressing
Block copy instructions

STMFD r13!, {r2-r9} ; Save regs onto stack. Full descending.
LDMIA r0!, {r2-r9} ;Block load
STMIA r1, {r2-r9} ; Block store
LDMFD r13!,{r2-r9} ; Restore from stack

Efficient way to save and restore processor state and to move
blocks of data
Operate up to four times faster than single register load/store
Data organization in memory in order to maximize the potential
for using multiple register data transfer
Not pure ‘RISC’: multiple clock cycles
Complex to implement.

4. Control Flow Instructions

Embedded Systems, KAIST 25

Branch instructions
Switch program execution

B LABEL
…

LABEL …
LABEL after or before B instruction

Conditional branches
Decision whether or not to branch
Control loop exit

MOV r0, #0 ; Initialize counter
LOOP …

ADD r0, r0, #1 ; Increment loop counter
CMP r0, #10 ; Compare with limit
BNE LOOP ; Branch (Repeat) if not equal
… ; Else fall through

Control Flow Instructions (II)

Embedded Systems, KAIST 26

Branch instructions
B ran c h In t e rp re t at i o n No rmal us e s
B
BAL

Unconditional
Always

Always take this branch
Always take this branch

BEQ Equal Comparison equal or zero result
BNE Not equal Comparison not equal or non-zero result
BPL Plus Result positive or zero
BMI Minus Result minus or negative
BCC
BLO

Carry clear
Lower

Arithmetic operation did not give carry-out
Unsigned comparison gave lower

BCS
BHS

Carry set
Higher or same

Arithmetic operation gave carry-out
Unsigned comparison gave higher or same

BVC Overflow clear Signed integer operation; no overflow occurred
BVS Overflow set Signed integer operation; overflow occurred
BGT Greater than Signed integer comparison gave greater than
BGE Greater or equal Signed integer comparison gave greater or equal
BLT Less than Signed integer comparison gave less than
BLE Less or equal Signed integer comparison gave less than or equal
BHI Higher Unsigned comparison gave higher
BLS Lower or same Unsigned comparison gave lower or same

Control Flow Instructions (III)

Embedded Systems, KAIST 27

Conditional execution
Conditional execution applies not only to branches but to all ARM
instructions
Example

CMP r0, #5
BEQ BYPASS ; if (r0 != 5) {
ADD r1, r1, r0 ; r1 := r1 + r0 – r2
SUB r1, r1, r2 ; }

BYPASS …
May be replaced by

CMP r0, #5 ; if (r0 != 5) {
ADDNE r1, r1, r0 ; r1 := r1 + r0 – r2
SUBNE r1, r1, r2 ; }
…

When the conditional sequence is three instructions or fewer
Cunning use of conditionals

CMP r0, r1 ; if ((a==b) && (c==d) e++;
CMPEQ r2, r3
ADDEQ r4, r4, #1

Control Flow Instructions (IV)

Embedded Systems, KAIST 28

Branch and link instructions
Functionality for subroutine call & return

BL SUBR ; Branch to SUBR
… ; Return to here

SUBR … ; Subroutine entry point
MOV pc, r14 ; Return. r14=link register.

Nested subroutine call: Save r14 and work registers in the stack
BL SUB1 ; Branch to SUBR
… ; Return to here

SUB1 STMFD r13!, {r0-r2,r14} ; Save work & link regs
BL SUB2
…

SUB2 …
A subroutine that does not call another subroutine (a leaf
subroutine) need not save r14 since it will not overwritten.

Control Flow Instructions (V)

Embedded Systems, KAIST 29

Subroutine return instructions
Simplest case

SUB2 …
MOV pc, r14 ; Copy r14 (link reg) to r15 (pc) to return

Any of data processing instructions can be used to compute a
return address
When the return address has been pushed onto a stack, it can be
restored with any saved working registers using LDM

SUB1 STMFD r13!, {r0-r2,r14} ; Save work & link regs
BL SUB2
…

SUB2 …
LDMFD r13!, {r0-r2, pc} ; Restore work regs & return

; Saved r14 restored to r15 (pc)

Control Flow Instructions (VI)

Embedded Systems, KAIST 30

Supervisor calls
When a program requires input or output
Operates at a privileged level
In many systems the user cannot access hardware facilities
directly

SWI (Software interrupt) instruction
Supervisor call

Send a character in bottom r0
SWI SWI_WriteC ; Output r0[7:0]

Returns control to the monitor program
SWI SWI_Exit ; Return to monitor

Control Flow Instructions (VI)

Embedded Systems, KAIST 31

Jump tables
When to call one of a set of
subroutines
Switch statement in C
Example

BL JUMPTAB
…

JUMPTAB CMP r0, #0
BEQ SUB0
CMP r0, #1
BEQ SUB1
CMP r0, #2
BEQ SUB2

More efficient way
BL JUMPTAB
…

JUMPTAB ADR r1, SUBTAB ; r1 := SUBTAB
CMP r0, #SUBMAX ; Check for

overrun
LDRLS pc, [r1, r0, LSR #2] ; if OK,

table jump
B ERROR ; Else signal error

SUBTAB DCD SUB0
DCD SUB1
DCD SUB2
…

Embedded Systems, KAIST 32

5. Writing Simple Assembly
Language Programs

Programming practice
Understand the problem: what to do, input, and output
Have a clear idea of your algorithm (top-down)
Coding & debugging (bottom-up)

Software development toolkit
Text editor to type the program into
Assembler to turn the program into ARM binary code
ARM system emulator to execute the binary on.

Some text output capability.

Debugger to see what is happening inside your program.

Writing Simple Assembly Programs (II)

Embedded Systems, KAIST 33

Hello world program
Print ‘Hello world’ on the display

AREA HelloW, CODE, READONLY ; Declare code area
SWI_WriteC EQU &0 ; Output character in r0
SWI_Exit EQU &11 ; Finish program System call

ENTRY ; Code entry point System call
START ADR r1, TEXT ; r1 -> “Hello World”. Pseudo instr
LOOP LDRB r0, [r1], #1 ; Get the next byte. Auto indexed

CMP r0, #0 ; Check for text end
SWINE SWI_WriteC ; If not end, print.

; Conditional syscall
BNE LOOP ; .. And loop back
SWI SWI_Exit ; End of execution

TEXT = “Hello World”,&0xa,&0xd,0 ; Text string: null terminated
END ; End of program source

Writing Simple Assembly Programs (III)

Embedded Systems, KAIST 34

Test block copy program
Block copy a text string & output

AREA BlkCpy, CODE, READONLY
SWI_WriteC EQU &0 ; Output char in r0
SWI_Exit EQU &11 ; Finish program

ENTRY ; Code entry point
ADR r1, TABLE1 ; r1 -> TABLE1
ADR r2, TABLE2 ; r2 -> TABLE2
ADR r3, T1END ; r3 -> T1END

LOOP1 LDR r0, [r1], #4 ; Get TABLE1 1st word
STR r0, [r2], #4 ; Copy into TABLE2
CMP r1, r3 ; Finished?
BLT LOOP1 ; If not, do more. BNE may fail!
ADR r1, TABLE2 ; r1 -> TABLE1

; To be continued

Writing Simple Assembly Programs (IV)

Embedded Systems, KAIST 35

Test block copy program (cont’d)

LOOP2 LDRB r0, [r1], #1 ; Get next byte
CMP r0, #0 ; Check for text end
SWINE SWI_WriteC ; Print character
BNE LOOP2 ; Loop back
SWI SWI_Exit ; Finish

; String data area
ALIGN ; Ensure word alignment

TABLE1 = “This is the right string!”, &0a, &0d, 0
T1END

ALIGN ; Ensure word alignment
TABLE2 = “This is the wrong string!”, &0a, &0d, 0

END

Writing Simple Assembly Programs (V)

Embedded Systems, KAIST 36

Program design
Pile of simple programs != complex programs
Serious programming

Should not start with coding, but with careful design

1. Understand the requirements
2. Requirements should be translated into an unambiguous
specification
3. Define a program structure & data structure
4. Devise suitable algorithms in pseudo-code

A program-like notation which does not follow the syntax of a particular
programming language but which makes the meaning clear

5. Begin coding
Individual modules should be coded, tested thoroughly, and documented.

It may be necessary to develop small software components in
assembly language to get the best performance for a critical
application.

	Embedded SystemsCh 12AARM Assembly Language
	Overview
	1. Introduction
	Introduction (II)
	Introduction (III)
	Introduction (IV)
	Introduction (V)
	Introduction (VI)
	2. Data Processing Instructions
	Data Processing Instructions (II)
	Data Processing Instructions (III)
	Data Processing Instructions (IV)
	Data Processing Instructions (V)
	Data Processing Instructions (VI)
	Data Processing Instructions (VII)
	3. Data Transfer Instructions
	Data Transfer Instructions (II)
	Data Transfer Instructions (III)
	Data Transfer Instructions (IV)
	Data Transfer Instructions (V)
	Data Transfer Instructions (VI)
	Data Transfer Instructions (VII)
	Data Transfer Instructions (VIII)
	Data Transfer Instructions (IX)
	4. Control Flow Instructions
	Control Flow Instructions (II)
	Control Flow Instructions (III)
	Control Flow Instructions (IV)
	Control Flow Instructions (V)
	Control Flow Instructions (VI)
	Control Flow Instructions (VI)
	5. Writing Simple Assembly Language Programs
	Writing Simple Assembly Programs (II)
	Writing Simple Assembly Programs (III)
	Writing Simple Assembly Programs (IV)
	Writing Simple Assembly Programs (V)

