
Embedded Systems

Ch 12B
ARM Assembly

Language

Byung Kook Kim
Dept of EECS

Korea Advanced Institute of Science and Technology

Overview

Embedded Systems, KAIST 2

6. Exceptions
7. Conditional Execution
8. Branch Instructions
9. Software Interrupt (SWI)
10. Data Processing Instructions
11. Special Data Transfer Instructions
12. Coprocessor Instructions
13. Miscellaneous Instructions
References

Steve Furber, “ARM System-on-chip architecture”, Second
Edition, Addison Wesley, 2000.

6. Exceptions

Embedded Systems, KAIST 3

ARM exceptions
1. Exceptions generated as the direct effect of executing an
instruction

Software interrupts,
Undefined instructions (coprocessor instructions where the requested
coprocessor is absent),
Prefetch aborts (invalid instruction due to memory fault)

2. Exceptions generated as a side-effect of an instruction
Data aborts (memory fault during load/store)

3. Exceptions generated externally, unrelated to the instruction
flow

Reset
IRQ
FIQ

Exceptions (II)

Embedded Systems, KAIST 4

Exception entry
Changes to the operating mode corresponding to the particular exception
Saves the address of the instruction following the exception entry
instruction in r14 of the new mode
Saves the old value of the CPSR in the SPSR of the new mode
Disables IRQs by setting bit 7 of the CPSR and, if the exception is a fast
interrupt, disables further fast interrupts by setting bit 6 of the CPSR
Forces the PC to begin executing at the relevant vector address.

Exception Mode Vector address
Reset SVC 0x00000000
Undefined instruction UND 0x00000004
Software interrupt (SWI) SVC 0x00000008
Prefetch abort (instruction fetch memory fault) Abort 0x0000000C
Data abort (data access memory fault) Abort 0x00000010
IRQ (normal interrupt) IRQ 0x00000018
FIQ (fast interrupt) FIQ 0x0000001C

Exceptions (III)

Embedded Systems, KAIST 5

Exception return
Any modified user registers must be restored from the handler’s stack
The CPSR must be restored from the appropriate SPSR
The PC must be changed back to the relevant instruction address in
the user instruction stream

When the return address is in r14
To return from a SWI or undefined instruction trap:

MOVS pc, r14
To return from an IRQ, FIQ, or prefetch abort:

SUBS pc, r14, #4 ; One instruction early
To return from a data abort to retry the data access:

SUBS pc, r14, #8 ; Two instruction early

Restore user registers
LDMFD r13!, {r0-r3,pc}^ ; PC, CPSR restored simultaneously.

Exceptions (IV)

Embedded Systems, KAIST 6

Exception priorities
Order in which the exceptions are handled

1. Reset (highest priority)
2. Data abort
3. FIQ
4. IRQ
5. Prefetch abort
6. SWI, undefined instruction.

Address exceptions ; An old exception
Vector address 0x00000014
Earlier ARM processors with 26-bit address space
Load/store outside the address apace.

7. Conditional Execution

Embedded Systems, KAIST 7

Condition field
Top four bits of all ARM instructions

Instructions to be executed or skipped according to the values
of N, Z, C, and V flags in the CSPR
Do not use the NV (never) condition

cond
31 2827 0

Conditional Execution (II)

Embedded Systems, KAIST 8

ARM condition codes
Opcode
[31:28]

Mnemoni c
extens i on

Interpretati on Status fl ag s tate for
executi on

0000 EQ Equal / equals zero Zset
0001 NE Not equal Z clear
0010 CS/HS Carry set / unsignedhigher or same C set
0011 CC/LO Carry clear / unsigned lower C clear
0100 MI Minus / negative Nset
0101 PL Plus / positive or zero Nclear
0110 VS Overflow V set
0111 VC No overflow Vclear
1000 HI Unsigned higher C set and Z clear
1001 LS Unsigned lower or same C clear or Zset
1010 GE Signedgreater than or equal Nequals V
1011 LT Signed less than N is not equal to V
1100 GT Signedgreater than Zclear andNequals V
1101 LE Signed less than or equal Z set or N is not equal to V
1110 AL Always any
1111 NV Never (do not use!) none

8. Branch Instructions
8A. Branch and Branch with Link (B, BL)

Embedded Systems, KAIST 9

Branch & branch with link
Standard way to cause a switch in the sequence of instruction
execution
Binary encoding:

Branch range: +-32 Mbytes
PC + (Offset << 2) + 8

Assembler format
B{L}{<cond>} <target adress>

BL: Move address of the next instruction into
the link register (r14).

cond 1 0 1 L 24-bit signed word offset
31 28 27 25 2423 0

Branch and Branch with Link (II)

Embedded Systems, KAIST 10

Branch examples
An unconditional jump

B LABEL ; Unconditional jump
…

LABEL … ; To here
Execute loop 10 times

MOV r0, #10 ; Initialize loop counter
LOOP …

SUBS r0, #1 ; Decrement counter setting CCs
BNE LOOP ; Loop if counter <>0
… ; Else drop through

Call a subroutine
BL SUBR ; Branch and link to SUBR
… ; Returns here
…

SUBR … ; Subroutine entry point
MOV PC, r14 ; Return

8B. Branch, Branch with Link and
Exchange (BX, BLX)

Embedded Systems, KAIST 11

Branch, branch with link and exchange
Thumb support

Switching the processor to execute Thumb instructions
Returning symmetrically to ARM and Thumb calling routines
On ARM processors supporting architecture v5T

Binary encoding

cond Rm0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
31 2827 6 5 4 3 0

1L

1 1 1 1 1 0 1 H 24-bit signed word offset
31 2827 2524 23 0

(1) BX|BLX Rm

(2) BLX label

Branch, Branch with Link and Exchange (II)

Embedded Systems, KAIST 12

Description of BX instruction
First format

Branch target is specified in a register, Rm
Bit[0] of Rm is copied into the T bits in the CPSR
Bit[31:1] are moved into the PC

If Rm[0] is 1, the processor switches to execute Thumb instructions.
If Rm[0] is 0, the processor continues executing ARM instructions.
Aligned to a word boundary (Clearing Rm[1:0]).

Second format
Branch target: PC + (offset << 2) + 8
The H bit (bit 24) is also added into bit 1 of the resulting address
Range of branch: +-32 Mbytes

BLX
Moves the address of the next instruction into the link register (r14).

Branch, Branch with Link and Exchange (III)

Embedded Systems, KAIST 13

BL/BLX Assembler format
1: B{L}X{<cond>} Rm
2: BLX <target address>

Examples
Unconditional jump

BX r0 ; Branch to address in r0
; Enter Thumb state if r0[0]=1

A call to a Thumb subroutine
CODE32 ; ARM code follows
…
BLX TSUB ; Call Thumb subroutine
…
CODE16 ; Start of Thumb code

TSUB … ; Thumb subroutine
BX r14 ; Return to ARM code.

9. Software Interrupt (SWI)

Embedded Systems, KAIST 14

Binary encoding

Description
The 24-bit immediate field does not influence the operation of
the instruction but may be interpreted by the system code.
If the condition is passed:

1. Save the address of the instruction after the SWI in r14_svc
2. Save the CPSR in SPSR_svc
3. Enter supervisor mode and disable IRQs (but not FIQs) by
setting CPSR[4:0] to 10011 and CSPR[7] to 1
4. Set the PC to 0x08, and begin executing the instruction there.

Assembler format
SWI{<cond>} <24-bit immediate>

cond 1 1 1 1 24-bit (interpreted) immediate
31 2827 2423 0

Software Interrupt (II)

Embedded Systems, KAIST 15

Examples
To output the character ‘A’

MOV r0, #’A’ ; Get ‘A’ in r0
SWI SWI_WrtieC ; and print it

A subroutine to output a text string following the call
BL STROUT ; Output follows message
= “Hello World”, &0a, &0d, 0
… ; Return to here
…

STROUT LDRB r0, [r14], #1 ; Get character
CMP r0, #0 ; Check for end marker
SWINE SWI_WriteC ; If not end, print
BNE STROUT ; … and loop
ADD r14, #3 ; align to next word
BIC r14, #3
MOV pc, r14 ; Return

Finish user program and return to monitor program
SWI SWI_Exit ; Return to monitor.

10. Data Processing Instructions

Embedded Systems, KAIST 16

Binary encoding

cond 0 0 operand 2# opcode S Rn Rd
31 28 2726 25 24 21 20 19 1615 12 11 0

destination register
first operand register
set condition codes
arithmetic/logic function

8-bit immediate1
25 11 8 7 0

#rot

Rm
11 7 6 5 4 3 0

#shift

Rm

0
25

11 8 7 6 5 4 3 0

Rs

Sh 0

10 Sh

immediate alignment

immediate shift length
shift type

second operand register

register shift length

Data Processing Instructions (II)

Embedded Systems, KAIST 17

ARM data processing instructions
Opcode
[24:21]

Mnemonic Meaning Effect

0000 AND Logical bit-wise AND Rd := Rn AND Op2
0001 EOR Logical bit-wise exclusive OR Rd := Rn EOR Op2
0010 SUB Subtract Rd := Rn - Op2
0011 RSB Reverse subtract Rd := Op2 - Rn
0100 ADD Add Rd := Rn + Op2
0101 ADC Add with carry Rd := Rn + Op2 + C
0110 SBC Subtract with carry Rd := Rn - Op2 + C - 1
0111 RSC Reverse subtract with carry Rd := Op2 - Rn + C - 1
1000 TST Test Scc on Rn AND Op2
1001 TEQ Test equivalence Scc on Rn EOR Op2
1010 CMP Compare Scc on Rn - Op2
1011 CMN Compare negated Scc on Rn + Op2
1100 ORR Logical bit-wise OR Rd := Rn OR Op2
1101 MOV Move Rd := Op2
1110 BIC Bit clear Rd := Rn AND NOT Op2
1111 MVN Move negated Rd := NOT Op2

Data Processing Instructions (III)

Embedded Systems, KAIST 18

Assembler format
<op>{<cond>}{S} Rd, Rn, #<32-bit immediate>
<op>{<cond>}{S} Rd, Rn, Rm, {<shift>}

Examples
To add r1 to r3 and place the result in r5

ADD r5, r1, r3
To decrement r2 and check for zero

SUBS r2, r2, #1 ; Dec r2 and set cc
BEQ LABEL ; Branch if r2 zero
… ; Else fall through

To multiply r0 by 5
ADD r0, r0, r0, LSL #2

To add 64-bit integer in r0, r1 to one in r2, r3
ADDS r2, r2, r0 ; Add lower, save carry
ADC r3, r3, r1 ; Add higher with carry.

10B. Multiply Instructions

Embedded Systems, KAIST 19

Binary encoding

Description

S bit: setting of condition codes
64-bit multiplies available on ARM7 (ARM7TDMI, ARM7TM, etc)

cond 0 0 0 0 Rm
31 28 27 2423 21 20 19 1615 12 11 8 7 4 3 0

1 0 0 1RsRn/RdLoRd/RdHimul S

Opcode
[23:21]

Mnemonic Meaning Effect

000 MUL Multiply (32-bit result) Rd := (Rm * Rs) [31:0]
001 MLA Multiply-accumulate (32-bit result) Rd := (Rm * Rs + Rn) [31:0]
100 UMULL Unsigned multiply long RdHi:RdLo := Rm * Rs
101 UMLAL Unsigned multiply-accumulate long RdHi:RdLo += Rm * Rs
110 SMULL Signed multiply long RdHi:RdLo := Rm * Rs
111 SMLAL Signed multiply-accumulate long RdHi:RdLo += Rm * Rs

Multiply Instructions (II)

Embedded Systems, KAIST 20

Assembler formats
32-bit product

MUL{<cond>}{S} Rd, Rm, Rs
MLA{<cond>}{S} Rd, Rm, Rs, Rn

64-bit product
<mul>{<cond>}{S} RdHi, RdLo, Rm, Rs

Examples
Scalar product of two vectors

MOV r11, #20 ; Initialize loop counter
MOV r10, #0 ; Initialize total

LOOP LDR r0, [r8], #4 ; Get first component
LDR r1, [r9], #4 ; .. And second
MLA r10,r0, r1, r10 ; Accumulate product
SUBS r11, r11, #1 ; Decrement loop counter
BNE LOOP

10C. Count Leading Zeros

Embedded Systems, KAIST 21

Binary encoding

Description
Set Rd to the number of the bit position of the most significant 1 in Rm.

Assembler format
CLZ{<cond>} Rd, Rm

Example
MOV r0, #&100
CLZ r1, r0 ; r1 := 8

Notes
Useful for renormalizing.
Architecture v5T only.

cond 0 0 0 1 0 1 1 0 0 0 0 0
31 28 27 16 15 12 11 4 3 0

Rd 0 0 0 0 0 0 0 1 Rm

destination register source register

Embedded Systems, KAIST 22

11. Special Data Transfer
Instructions

11A. Single Word and Unsigned Data Byte Data
Transfer Instructions

Description
Construct an address starting from a base register (Rn)
Add (U=1) or subtract (U=0) an unsigned immediate or (possibly
scaled) register offset
Computed address is used to load (L=1) or store (L=0)
an unsigned byte (B=1) or word (B=0) quantity
to or from a register (Rd), from or to memory.
When a byte is loaded into a register, it is zero extended to 32 bits.
When a byte is stored into memory, the bottom eight bits of the
register are stored.
A pre-indexed (P=1) addressing mode uses the computed address
for the load or store operation.
When write-back is requested (W=1), updates the base register to
the computed value.
A post-indexed (P=0) addressing mode.

Single Word and Unsigned Data Byte Data
Transfer Instructions (II)

Embedded Systems, KAIST 23

Binary encoding

cond 0 1 offset# L Rn Rd
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

source/destination register
base register
load/store

write-back (auto-index)

12-bit immediate0
25 11 0

Rm
11 7 6 5 4 3 0

#shift1
25

Sh 0

immediate shift length
shift type

of fset register

P U B W

unsigned byte/word

up/down
pre-/post-index

Single Word and Unsigned Data Byte Data
Transfer Instructions (III)

Embedded Systems, KAIST 24

Assembler format
Pre-indexed form

LDR|STR{<cond>}{B} Rd, [Rn, <offset>]{!}
B: unsigned byte transfer. B=0: word
Offset: +/-12-bit immediate or +/-Rm {, shift}
!: Write back (auto-indexing) in the pre-indexed form

Post-indexed form
LDR|STR{<cond>}{B}{T} Rd, [Rn], <offset>

T: selects the user view of the memory translation and protection
system. Facility for operating system experts.

PC-relative form
LDR|STR{<cond>}{B} Rd, LABEL

Single Word and Unsigned Data Byte Data
Transfer Instructions (IV)

Embedded Systems, KAIST 25

Examples
To store a byte in r0 to a peripheral

LDR r1, UARTADD ; UART address into r1
STRB r0, [r1] ; Store data to UART
…

UARTADD & &100000 ; Address literal

Notes
Using the PC as the base address delivers the address of the
instruction plus 8 bytes. It should not be used as the offset
register, nor with any auto-indexing address mode.
Loading a word into the PC causes a branch. Loading a byte into
a PC should be avoided.

11B. Half-Word and Signed Byte
Data Transfer Instructions

Embedded Systems, KAIST 26

Binary encoding

cond 0 0 0 offsetH# L Rn Rd
31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

source/destination register

base register
load/store
write-back (auto-index)

Imm[7:4]1
22 11 8 3 0

Rm
11 8 3 0

0 0 0 00
22

offset register

P U W

up/down
pre-/post-index

offsetLH1 S 1

Imm[3:0]

Half-Word and Signed Byte Data
Transfer Instructions (II)

Embedded Systems, KAIST 27

Description
Very similar to the word and unsigned byte forms
Immediate offset is limited to 8 bits
Scaled register offset is no longer available

Assembler formats
Pre-indexed form

LDR|STR{<cond>}H₩SH|SB Rd, [Rn, <offset>]{!}

Post-indexed form
LDR|STR{<cond>}H|SH|SB Rd, [Rn], <offset>

Offset is +/-8-bit immediate or +/-Rm.

S H Data type
1 0 Signed byte
0 1 Unsigned half-word
1 1 Signed half-word

11C. Multiple Register
Transfer Instructions

Embedded Systems, KAIST 28

Binary encoding

Description
Register list: bit 0 is r0, bit 15 is PC.
The base address will be incremented (U=1) or decremented (U=0)
before (P=1) or after (P=0) each word transfer.
Auto-indexing is supported (W=1): The base register will be increased
(U=1) or decreased (U=0).
Used on procedure entry and return to save and restore work-space
registers.

cond 1 0 0 register listL Rn
31 28 27 25 24 23 22 21 20 19 16 15 0

base register
load/store

write-back (auto-index)

P U S W

restore PSR and force user bit
up/down
pre-/post-index

Embedded Systems, KAIST 29

Multiple Register Transfer
Instructions (II)

Assembler format
LDM|STM{<cond>}<add mode> Rn{!}, <registers>

In a non-user mode, the CPSR may be restored by
LDM{<cond>}<add mode> Rn{!}, <registers + PC>^

In a non-user mode, user registers may be saved/restored by
LDM|STM{<cond>}<add mode> Rn, <registers - PC>^

Examples
To save three work registers and the return address upon
entering a subroutine (r13=SP)

STMFD r13!, {r0-r2, r14}

To restore the work registers and return
LDMFD r13!, {r0-r2, pc}.

11D. Swap Memory and
Register Instructions (SWP)

Embedded Systems, KAIST 30

Binary encoding

Description
Loads the word (B=0) or unsigned byte (B=1) at the memory address by
Rn into Rd, and stores the same data type from Rm into the same
memory location.
Can be used as a basis of a semaphore mechanism to give mutually
exclusive access to data structures that are shared between multiple
processes, processors, or a processor and a DMA controller.

Assembler format
SWP{<cond>}{B} Rd, Rm, [Rn].

cond 0 0 0 1 0
31 28 27 23 22 21 20 19 16 15 12 11 4 3 0

B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm

destination register
base register
unsigned byte/word

source register

11E. Status Register to General
Register Transfer Instructions

Embedded Systems, KAIST 31

Binary encoding

Description
The CSPR (R=0) or the current SPSR (R=1) is copied into the
destination register Rd.

Assembler format
MRS{<cond>} Rd, CPSR|SPSR

Examples
MRS r0, CPSR ; move the CPSR to r0
MRS r3, SPSR ; move the SPSR to r3

SPSR form should not be used in user mode.

cond 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
31 28 27 23 2221 1615 12 11 0

Rd0 0 1 1 1 1R

destination register

SPSR/CPSR

Embedded Systems, KAIST 32

11F. General Register to Status
Register Transfer Instructions

Binary encoding

cond 0 0 operand# field 1 1 1 1
31 28 2726 25 2423 2221 20 19 1615 12 11 0

field mask

8-bit immediate1
25 11 8 7 0

Rm
11 4 3 0

0

25

0 0 0 0 0 0 0 0

operand register

1 0 R 1 0

SPSR/CPSR

#rot

immediate alignment

General Register to Status Register
Transfer Instructions (II)

Embedded Systems, KAIST 33

Description
The operand (register Rm or a rotated 8-bit immediate) is moved
under a field mask to the CPSR (R=0) or current mode SPSR
(R=1).
The field mask controls the update of the four byte fields within
the PSR register.

Assembler format
MSR{<cond>} CPSR_f|SPSR_f, #,32-bit immediate>
MSR{<cond>} CPSR_<field>|SPSR_<field>, Rm

<field>:
C – the control field – PSR[7:0]
X – the extension field – PSR[15:8] (unused on current ARMs)
S – the status field – PSR[23:16] (unused on current ARMs)
F – the flags field – PSR[31:24]

General Register to Status Register
Transfer Instructions (III)

Embedded Systems, KAIST 34

Examples
To set the N, Z, C, and V flags:

MSR CPSR_f, #&f0000000 ; Set all the flags

To set just the C flag, preserving N, Z, and V:
MRS r0, CPSR ; Move the CPSR to r0
ORR r0, r0, #&20000000 ; Set bit 29 of r0
MSR CSPR_f, r0 ; Move back to CPSR

To switch from supervisor mode into IRQ mode
MRS r0, CPSR ; Move the CPSR to r0
BIC r0, r0, #$1f ; Clear the 5 bottom bits
ORR r0, r0, #&12 ; Set the bits to IRQ mode
MSR CPSR_c, r0 ; Save back to CPSR

12. Coprocessor Instructions

Embedded Systems, KAIST 35

Coprocessors
A general mechanism for extending the instruction set

System coprocessor – cache, memory management on ARM720
Floating-point ARM coprocessor
Application-specific coprocessor

Coprocessor registers
Own private register sets

Instruction formats
Coprocessor data operations

Completely internal to the coprocessor and cause a state change in
the coprocessor registers

Coprocessor data transfers
Load or store the values in coprocessor registers from or to memory.

Coprocessor register transfers
Move values between ARM and coprocessor registers.

12B. Coprocessor Data
Operations

Embedded Systems, KAIST 36

Binary encoding

Description
Coprocessor CP# accept the instruction and perform the operation
defined by the Cop1 and Cop2 fields, using CRn and CRm as source
operands and packing the result in CR4

Assembler format
CDP{<cond>} <CP#>, <Cop1>, CRd, CRn, CRm {, <Cop2>}

Examples
CDP p2, 3, C0, C1, C2
CDPEQ p3, 6, C1, C5, C7, 4

Notes
The interpretation of the Cop1, CRn, CRm, CRd, and Cop2 fields is
coprocessor dependent.
The above interpretation is recommended.

cond 1 1 1 0 CRm
31 28 27 2423 20 19 1615 12 11 8 7 5 4 3 0

Cop1 CRn CRd CP# Cop2 0

12C. Coprocessor Data
Transfers

Embedded Systems, KAIST 37

Binary encoding

Description
The coprocessor CP# will accept the instruction.
The offset limited to 8 bits (12 bits for load/store)

cond 1 1 0 8-bit offsetL Rn CRd
31 2827 25242322212019 1615 1211 8 7 0

source/destination register
base register
load/store

write-back (auto-index)

P U NW

data size (coprocessor dependen

up/down
pre-/post-index

CP#

Coprocessor Data Transfers (II)

Embedded Systems, KAIST 38

Assembler format
Pre-indexed:

LDC|STC{<cond>} {L} <CP#>, CRd, [Rn, <offset>}{!}
Post-indexed:

LDC|STC{<cond>} {L} <CP#>, CRd, [Rn], <offset>

Examples
LDC p6, C0, [r1]
STCEQL p5, C1, [r0], #4

Notes
The interpretation of the N and CRd fields is coprocessor-
dependent
The number of words transferred is controlled by the coprocessor.

12D. Coprocessor Register
Transfers

Embedded Systems, KAIST 39

Binary encoding

Description
Load: Perform an operation defined by Cop1 and Cop2 on source
operands CRn and CRm and return a 32-bit integer result to the ARM
which will replace it in Rd

Assembler format
Move to ARM from cop

MRC{<cond>} <CP#>, <Cop1>, Rd, CRn, CRm{, <Cop2>}
Move to cop from ARM

MCR{<cond>} <CP#>, <Cop1>, Rd, CRn, CRm{, <Cop2>}
Examples

MCR p14, 3, r0, C1, C2
MCRCS p2, 4, r3, C3, C4, 6

cond 1 1 1 0 CRm
31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

Cop1 CRn Rd CP# Cop2 1L

load from coprocessor/store to coprocessor

Embedded Systems, KAIST 40

13. Miscellaneous Instructions
13A. Breakpoint Instruction

Binary encoding

Description
Used for software debugging purposes (v5T only)
Causes the processor to take a prefetch abort when the debug
hardware unit is configured appropriately.

Assembler format
BRK

Example
BRK ; !

1 1 1 0 0 0 0 1 0 0 1 0
31 28 27 20 19 16 15 12 11 8 7 4 3 0

x x x x x x x x x x x xx x x x 0 1 1 1

13B. Unused Instruction Space

Embedded Systems, KAIST 41

Unused arithmetic instructions

Unused control instructions

Unused load/store instructions

cond 0 0 0 0 0 1 Rm
31 2827 22212019 1615 1211 8 7 4 3 0

1 0 0 1RsRdRnop

cond 0 0 0 1 0 Rm

31 28 27 23 2221 20 19 1615 12 11 8 7 6 4 3 0

op2RsRdRnop1 0 0

cond 0 0 0 1 0 Rmop2RsRdRnop1 0 1

cond 0 0 1 1 0 8-bit immediate#rotRdRnop1 0

0

cond 0 0 0 RsB L Rn Rd
31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

P U W Rm1 op1 1

Unused Instruction Space (II)

Embedded Systems, KAIST 42

Unused coprocessor instructions

Unused instruction space

Behavior of unused instructions
Undefined instruction trap if an attempt is made to execute an instruction
in the undefined address space.

cond 1 1 0 0 CP#X Rn CRd
31 2827 25242322212019 1615 1211 8 7 0

op 0 offset

cond 0 1 1 X X X X
31 28 27 25 24 5 4 3 0

1X X X X X X X X X X X X X X X X X X X X

	Embedded SystemsCh 12BARM Assembly Language
	Overview
	6. Exceptions
	Exceptions (II)
	Exceptions (III)
	Exceptions (IV)
	7. Conditional Execution
	Conditional Execution (II)
	8. Branch Instructions8A. Branch and Branch with Link (B, BL)
	Branch and Branch with Link (II)
	8B. Branch, Branch with Link and Exchange (BX, BLX)
	Branch, Branch with Link and Exchange (II)
	Branch, Branch with Link and Exchange (III)
	9. Software Interrupt (SWI)
	Software Interrupt (II)
	10. Data Processing Instructions
	Data Processing Instructions (II)
	Data Processing Instructions (III)
	10B. Multiply Instructions
	Multiply Instructions (II)
	10C. Count Leading Zeros
	11. Special Data Transfer Instructions11A. Single Word and Unsigned Data Byte Data Transfer Instructions
	Single Word and Unsigned Data Byte Data Transfer Instructions (II)
	Single Word and Unsigned Data Byte Data Transfer Instructions (III)
	Single Word and Unsigned Data Byte Data Transfer Instructions (IV)
	11B. Half-Word and Signed Byte Data Transfer Instructions
	Half-Word and Signed Byte Data Transfer Instructions (II)
	11C. Multiple Register Transfer Instructions
	Multiple Register Transfer Instructions (II)
	11D. Swap Memory and Register Instructions (SWP)
	11E. Status Register to General Register Transfer Instructions
	11F. General Register to Status Register Transfer Instructions
	General Register to Status Register Transfer Instructions (II)
	General Register to Status Register Transfer Instructions (III)
	12. Coprocessor Instructions
	12B. Coprocessor Data Operations
	12C. Coprocessor Data Transfers
	Coprocessor Data Transfers (II)
	12D. Coprocessor Register Transfers
	13. Miscellaneous Instructions13A. Breakpoint Instruction
	13B. Unused Instruction Space
	Unused Instruction Space (II)

