Embedded Systems

Ch 13A Analog Interface & Codec

Byung Kook Kim Dept of EECS Korea Advanced Institute of Science and Technology

Overview

- 1. Introduction
- 2. A/D Conversion
- 3. ADC Interface
- 4. Sensor Interface
- 5. D/A Conversion
- 6. *PWM*
- References
 - Steve Heath, "Embedded Systems Design", 2nd Ed., Newnes, 2003.

1. Introduction

- How to sample external voltages and convert them into digital values
 - Sources
 - Sensors
 - Convert physical quantity into electrical quantity
 - Represent light levels, temperature, vibration
 - Analog signals
 - Output of microphone or audio system
 - Conversion
 - Analog-to-digital converter

DAC

- How to turn digital data into an analog output voltage
 - Destinations
 - Speaker, motor
 - Conversion
 - Digital-to-analog converter

2. A/D Conversion

Amplifier

- Increases a given input voltage
 - Ex: Sensor output amplification from 5mVpp to 5Vpp

Gain = V_out / V_in = 1000

- Implementation
 - Using vacuum tubes, transistors, or OP amps
 - Inverting amplifier
 - Non-inverting amplifier
 - Differential amplifier
 - Restrictions
 - Frequency response
 - Home stereo: 20 Hz 20 kHz
 - Sensor: flat (ideally)
 - Distortion
 - Total Harmonic Distortion (THD) in audio amp.

A/D Conversion (II)

Analog-to-Digital converter (ADC)

- A device that converts an analog input voltage to a digital number
- Coder part of codec (Coder-DECoder)
- Used in maaaaaaany areas
 - Microphone in PC
 - CD mastering
 - DVD mastering
 - Sensor processing
- Types
 - Integrating ADC: Counter, DAC, Comparator. 2⁽ⁿ⁻¹⁾ clocks average.
 - Successive-approximation ADC: Binary search. n clocks.
 - Flash ADC (parallel ADC): (2ⁿ 1) comparators, encoding logic.

A/D Conversion (III)

Sampling

- Sample rate: samples per second
 - >2x signal bandwidth to avoid aliasing: Nyquist sampling theory
 - Faster: expensive ADC required

Quantization

- Accuracy of each sample (resolution)
- Number of bits in digital data
- Quantization level: Full_scale_voltage/(2^n)
 - 8-bit ADC: 1/256
 - 12-bit ADC: 1/4096
 - 16-bit ADC: 1/65536. More expensive
 - Ex: Temperature sensor with a range 0 to 100 deg.C, 0.5 deg. Resolution: 8bit ADC is sufficient.
 - Ex2: CD 16-bit, 44.1 kHz, stereo. 600 MB/h.
- Conversion equation
 - Analog signal = (digital sample / max value) * reference voltage.

3. ADC Interface

Wide range of ADCs

- Low-cost, low-speed ADCs: Simple voltage conversion
- High-speed, precise (and expensive) ADCs: Sampling video streams
- Built-in ADCs in microcontrollers: Simple interface

Considerations

- Number of bits (resolution): 8/12/14/16
- Conversion rate (speed)
- Interface: Parallel, serial, SPI, I2C
- Analog multiplexer, Sample-and-hold: Internal or external
- Package
- Cost

ADC Interface (II)

Maxim MAX1245

- A good general-purpose ADC for sensor applications
 - 8 channels of analog input
 - 100K samples/sec
 - 12-bit resolution
 - Internal track-and-hold
 - Interface: SPI, microwire, serial (TI DSP)
 - DOUT: MISO, DI: MOSI, SCLK: SCLK
- Operation
 - Start command to ADC via the SPI interface
 - Specifies the channel and other ADC settings
 - Internal/external clocks
 - SPI SCLK can be used as ADC clock

ADC Interface (III)

ADC Interface (IV)

- MAX1245
 - Ability to enter low-power mode
 - Hardware: SHDN' pin. Low: low-power operation
 - Also specifies the clock frequency (1: 1.5 MHz, 0: 225 kHz)
 - Software:
 - If the two least-significant bits of the start command are both 0, then the MAX1245 is placed in shutdown.
 - Conversion and shutdown possible: Conversion and then shut-down.
- Power
 - In the range 2.7V to 3.3V
- Grounds
 - COM: Ground reference for analog inputs
 - DGND: ground for digital section
 - AGND: ground for analog section
 - -> Connected together at a single point near AGND.

4. Sensor Interface

A. Temperature Sensor

- Applications
 - Room temperature: heating & cooling systems
 - Temperature recorder: shipment of fruits, vegetables, frozen foods, and flowers
- AD22100/22103 temperature sensors by Analog Devices
 - Easy to use
 - 3-pin device: power, GND, and Vout ->
 - 5V (AD22100), 3.3V (AD22103)

Sensor Interface (II)

- Temperature sensor (Cont'd)
 - AD22100/22103
 - Temperature range: -50 deg.C to 150 deg.C
 - 22.5 mV/deg.C for AD22100
 - Vout = (Vs/5)*(1.375 + 0.0225*TA)
 - TA = (((Vout*5)/Vs) 1.375) / 0.0225
 - 28 mV/deg.C for AD22103
 - Vout = $(Vs/3.3)^*(0.25 + 0.028^*TA)$
 - TA = (((Vout * 3.3) / Vs) / 0.028

Interfacing ->

Sensor Interface (III)

B. Light Sensor

- Applications
 - Artificial lighting systems
 - Security detector: Checks light interruption
- TAOS TSL250R
 - Texas Advanced Optical Solutions Inc. <u>http://www.taosinc.com</u>
 - Consists of a photodiode and an integrated amplifier
 - Simple 3-pin device:
 - Vcc, GND, Output ->
 - Spectral response ->
 - Supply voltage between 2.7V to 5.5V
 - Consumes typically only 1.1 mA
 - Output: 0 to 4V

Sensor Interface (IV)

Light sensor (Cont'd)

- Amplifying the light sensor
 - 4V to 5V. Gain: 1.25
 - AD623: A good general-purpose op amp
 - Rail-to-rail operation, Single supply voltage
 - Requires very little current, Easy to use
 - Single external resistor to set gain
 - R_G = 100 kohm / (Gain 1)
 - 1% accurate R req'd
 - Amplifier circuit ->

Sensor Interface (V)

• C. Accelerometer

- ADXL150 (Analog Devices)
 - Single-axis (one-dimensional) accelerometer
 - Resolution 10 mg (1 g = 9.8 m/s^2)
 - Full-scale range +-50g
- ADXL250
 - Dual-axis (two-dimensional) accelerometer
- Applications
 - Measure linear acceleration of vehicles
 - Gentle vibrations and shifts
 - Seismometer
 - Vibrations of ground shift in mines, in tunnels, or at building sites
 - Monitor motion.

Sensor Interface (VI)

Accelerometer (Cont'd)

- Axis of sensitivity for ADXL150 ->
 - Use strong glue under the chip
- ADXL150 circuit ->
 - No external components except power supply
 - Incorporates sensor, signal conditioning, and amplification
 - Output directly interfaced to an ADC
 - TESTPOINT: Used during manufacturing process
 - Power supply 4 6 V (5 V exact desirable)
 - V_out = Vs/2 (sensitivity * Vs/5 * acceleration)
 - Sensitivity: 33.0 to 43.0 (38.0 nominal) for range +-50g
 - Sensitivity doubling
 - Connect output to the OFFSET_NULL pin (+-25g)
 - SELF-TEST: Verify correct operation (artificial force)

Sensor Interface (VI)

D. Pressure sensors

Applications

- Air pressure for weather monitoring and prediction
- Cars: manifold pressure
- Washing machine: water level
- Biomedical: blood pressure
- Measure altitude (air pressure dep. on height above sea level)
- Ocean depth
- Sensing methods
 - Deflection of a diaphragm separating two chambers
 - Absolute, differential, gauge (wrt atmosphere)

Sensor Interface (VIII)

Pressure sensors (II)

Motorola MPXA6115A

- Absolute pressure sensor ->
- 5 V supply
- Output voltage 0.2V to 4.8V (15kPa to 115kPa)
- Integrates signal conditioning, temperature compensation
- Requires
 - External power supply and decoupling capacitor only
 - RC filter at the output

Sensor Interface (IX)

Pressure sensors (III)

KP100 by Infineon

- Absolute pressure sensor
- Incorporates a built-in ADC
- Much less susceptible to noise and interference
- SPI interface ->
- 5V supply and decoupling capacitor
- READY output: may interrupt the processor
- Separate CLK input: 4MHz or 8MHz

Sensor Interface (X)

E. Magnetic field sensor

- AD22151 by Analog Devices
 - Measure position and proximity
 - Magnetic source as a reference point
 - Built-in temperature compensation and amplification
 - Sensor circuit ->
 - R1: Temperature compensation resistor
 - R2, R3: Gain
 - R4: Voltage offset

5. D/A Conversion

Digital-Analog Converter

- Take digital data and convert it into an analog signal
- Digital input
 - Bus, SPI, or I²C

MAX525 by Maxim

- 12bit DAC with SPI interface ->
- 4 channels of analog output
 - OUTA, OUTB, OUTC, OUTD
- Output amplifiers on-chip
 - Feedback inputs: FBA, FBB, FBC, FBD
- Voltage reference inputs: REFAB, REFCD
 - At least 1.4V or more below VCC
- Output voltage
 - Vout = (Vref * code / 4096) * gain

D/A Conversion (II)

- MAX525 (Cont'd)
 - Daisy chaining multiple MAX525s ->

- CLb input: All outputs to lowest value
- Low-power mode under software control
- PDLb input: power-down lockout
- UPO: User Programmable Output
 - General-purpose

D/A Conversion (III)

MAX525 (Cont'd too)

- Nonunity gain amplifier ->
 - Gain = 1 + R2 / R1

- Bipolar output
 - Use external amplifier with bipolar supplies ->

6 PWM

Pulse Width Modulation

- Use one digital output to generate analog output
 - Use a constant frequency (or period)
 - Change the duty cycle
 - Average value of the output is proportional to the duty cycle
- Low-pass filter
 - Averaging
 - Convert the pulse to an analog voltage
- Applications
 - Drive LEDs
 - Drive a speaker
 - Frequency and duty -> pitch and volume

PWM (II)

- DAC + linear amplifier
 - Poor low-speed operation
 - Low power efficiency
- PWM + switching amplifier
 - Better low-speed operation
 - High power efficiency

H-bridge ->

- Bidirectional drive with single power supply
- Q1, Q3 simultaneous ON: short circuit!

PWM (III)

MC33186 by Motorola ->

- More functionality
- Easier to control
- V+: 5 to 28V
- TTL compatible inputs
- Switch continuous current up to 5A
- Built-in short-circuit and over-current protection

Pins

- CP: Charge pump
- Forward: DI1=0, DI2=1, IN1=1, IN2=0
- Backward: DI1=0, DI2=1, IN1=0, IN2=1
- Freewheeling: DI1=0, DI2=1, IN1=IN2
- Disabled: DI1=1 or DI2=0
- SF output: Status Flag.