
Embedded Systems

Ch 14B
Linux Kernel

Byung Kook Kim
Dept of EECS

Korea Advanced Institute of Science and Technology

Overview

Embedded Systems, KAIST 2

1. Bootloader

2. EzBoot

3. Boot Sequence

4. Linux Boot Process

5. Linux Kernel

4. Linux Boot Process

Embedded Systems, KAIST 3

The chain of events at boot in PC

CPU -> VGA -> Power-On-Self-Test ->
SCSI -> Boot Manager -> Lilo boot loader ->
kernel-> init-> bash.

The firmware and software programs output various
messages as the computer and Linux come to life.

Linux Boot Process (II)

Embedded Systems, KAIST 4

Linux boot procedure (PC with Disk)
1. The Motherboard BIOS Triggers the Video Display Card BIOS
Initialization
2. Motherboard BIOS Initializes Itself
3. SCSI Controller BIOS Initializes
4. Hardware Summary:

The motherboard BIOS then displays the summary of its hardware
inventory. And runs its Virus checking code that looks for changed
boot sectors.

5. BootManager Menu:
The Master Boot Record (MBR) on the first hard disk is read, by DOS
tradition, into address 0x00007c00, and the processor starts
executing instructions there.
This MBR boot code loads the first sector of code on the active DOS
partition.

Linux Boot Process (III)

Embedded Systems, KAIST 5

Linux boot procedure (II)
6. Lilo is started:

If the Linux selection is chosen and if Linux has been installed with
Lilo, Lilo is loaded into address 0x00007c00.
Lilo prints LILO with its progress revealed by individually printing the
letters.

The first "L" is printed after Lilo moves itself to a better location at
0x0009A000.
The "I" is printed just before it starts its secondary boot loader code.
Lilo's secondary boot loader prints the next "L", loads descriptors
pointing to parts of the kernel, and then prints the final "O".

The descriptors are placed at 0x0009d200.
The boot message and a prompt line, if specified, are printed.
The pressing "Tab" at the prompt, allows the user to specify a
system and to provide command-line specifications to the Linux
Kernel, its drivers, and the "init" program. Also, environment
variables may be defined at this point.

Linux Boot Process (IV)

Embedded Systems, KAIST 6

Linux boot procedure (III)
7. The kernel code in /linux/arch/i386/boot/setup.S arranges the
transition from the processor running in real mode (DOS mode)
to protected mode (full 32-bit mode).

Blocks of code named Trampoline.S and Trampoline32.S help with
the transition.
Small kernel images (zImage) are decompressed and loaded at
0x00010000.
Large kernel images (bzImage) are loaded instead at 0x00100000.
This code sets up the registers, decompresses the compressed kernel
(which has linux/arch/i386/head.S at its start), printing the following
2 lines from linux/arch/i386/boot/compressed/misc.c

Uncompressing Linux... Ok.
Booting the kernel.

The i386-specific setup.S code has now completed its job and it
jumps to 0x00010000 (or 0x00100000) to start the generic Linux
kernel code.

Linux Boot Process (V)

Embedded Systems, KAIST 7

Linux boot procedure (IV)
8. Generic Linux kernel code

Processor, Console, and Memory Initialization:
This runs linux/arch/i386/head.S which in turn jumps to
start_kernel(void) in linux/init/main.c where the interrupts are redefined.

Linux/kernel/module.c then loads the drivers for the console and pci bus.

From this point on the kernel messages are also saved in memory and
available using /bin/dmesg.

They are then usually transferred to /var/log/message for a permanent
record.

PCI Bus Initialization:
mpci_init() in linux/init/main.c causes lines from
linux/arch/i386/kernel/bios32.c to be printed.

Network Initialization:
socket_init() in linux/init/main.c causes network initializations.

Linux Boot Process (VI)

Embedded Systems, KAIST 8

Linux boot procedure (V)
8B. Generic kernel code (cont’d)

The Kernel Idle Thread (Process 0) is Started : At this point a kernel
thread is started running init() which is one of the routines defined in
linux/init/main.c.

This init() must not be confused with the program /sbin/init that will be
run after the Linux kernel is up and running.

mkswapd_setup() in linux/init/main.c causes the following line from
linux/mm/vmscan.c to be printed:

Starting kswapd v 1.5

Linux Boot Process (VII)

Embedded Systems, KAIST 9

Linux boot procedure (VI)
8C. Generic kernel code (Cont’d)

Device Driver Initialization : The kernel routine
linux/arch/i386/kernel/setup.c then initializes devices and file
systems. It produces the following lines and then forks to run
/sbin/init:

Generic Parallel Port Initialization: The parallel port initialization routine
linux/drivers/misc/parport_pc.c prints.
Character Device Initializations: from linux/drivers/char/serial.c:
Block Device Initializations : linux/drivers/block/rd.c prints:

RAM disk driver initialized: 16 RAM disks of 8192K size
linux/drivers/block/loop.c prints:

loop: registered device at major 7
linux/drivers/block/floppy.c prints:

Floppy drive(s): fd0 is 1.44M, fd1 is 1.44M FDC 0 is a post-1991
82077

SCSI Bus Initialization: aic7xxx.c, scsi.c, sg.c, sd.c or sr.c in the
subdirectory linux/drivers/scsi.

Linux Boot Process (VIII)

Embedded Systems, KAIST 10

Linux boot procedure (VII)
8D. Generic kernel code (Cont’d)

Initialization of Kernel Support for Point-to-Point Protocol : The
initialization is done by linux/drivers/net/ppp.c.
Examination of Fixed Disk Arrangement : from
linux/drivers/block/genhd.c:

9. Init Program (Process 1) Startup:
The program /sbin/init is started by the "idle" process (Process 0)
code in linux/init/main.c and becomes process 1.
/sbin/init then completes the initialization by running scripts and
forking additional processes as specified in /etc/inittab.
It starts by printing: INIT: version 2.76 booting and reads
/etc/inittab.

10. The Bash Shell is Started:
The bash shell, /bin/bash is then started up. Bash initialization begins
by executing script in /etc/profile which set the system-wide
environment variables. Login:

5. Linux Kernel

Embedded Systems, KAIST 11

주요 특징
Multi-tasking (다중작업)

Preemptive, mutually independent
Multi-user access (다중 사용자 접근)
Multi-tasking (다중 처리)

Multi-task time sharing
Distribution to multiple processors possible

Architecture independence (구조 독립성)
Pc, Amiga, DEC Alpha, Sparc, Power PC, ARM, …

Demand load executables (요구 적재 실행 가능성)
Loaded into memory only when required. Copy-on-write.

Paging (페이징)
Memory full: disk swap in 4K bytes unit (not a whole process).

Dynamic cache for hard disk
동적으로 사용중인 disk cache memory 의 크기를 조정 가능.

Linux Kernel (II)

Embedded Systems, KAIST 12

주요 특징 (cont’d)
Shared Libraries (공유된 library)

여러 프로세스에서 요구하는 Library code 들을 한번만 적재하여 공유

POSIX 1003.1 standard, System V, BSD support
POSIX 1003.1: Unix 형태의 운영체제 최소의 interface
System V, BSD 를 위한 부가적인 system interface

실행가능한 파일들에 대한 다양한 형식들
MS-DOS, Windows emulator

Memory protection mode
Access protection to other processes and system kernel

Internationalization
Character sets and keyboard drivers for various countries

여러 file system 지원
Ext2, VFAT, ISO, NFS
AFF for Amiga, UPS, SysV, HPFS for OS/2, Sambe, Windows NT

TCP/IP, SLIP, PPP 지원.

Linux Kernel (III)

Embedded Systems, KAIST 13

Kernel Architecture
Microkernel

Windows NT, Minix, Hurd
실제 kernel은 inter-process communication, memory 관리 등의 최소
의 기능만을 가지며 작고 compact 하다.
OS의 기타 기능들은 microkernel과 통신에 의하여 정보를 교환한다.
장점:

유지, 관리 문제가 덜 발생한다.
각 구성요소들은 독립적으로 작동하며 교체가 용이하다

새로운 구성요소의 개발이 간단하다.
단점

Overall optimization이 어렵다.
IPC가 광범위하다.

Single kernel
Linux (But modular construction)
느린 processor에서도 동작한다 (i386)
Run-time 최적화

Linux Kernel (IV)

Embedded Systems, KAIST 14

Linux kernel 2.0 for Intel architecture
470,000 lines of C code

165,000 lines for 1.0
5% for Kernel (process and memory management)

8,000 lines of Assembly code

Components
Item C code ASM lines

Device driver 377,000 100
Network 25,000
VFS 13,500
File systems 50,000
Initialization 4,000 2,800
Math Coprocessor 3,550
Miscellaneous 20,000

Linux Kernel (V)

Embedded Systems, KAIST 15

Linux Process Status
Running

In user mode
System call

Via software interrupt
Can wait for a specific event

Return from system call
After system call or interrupt service
Check for scheduler and signal

Interrupt routine
Generated by hardware

Waiting
Wait for an external event

Ready
Compete with other process to obtain the processor.

Running

Ret from
syscall

ISR Syscall

Ready Waiting

Linux Kernel (VI)

Embedded Systems, KAIST 16

Data Structure
Task structure: struct task_struct {…} for each task

Volatile long state; TASK_RUNNING, TASK_STOPPED, …
Long counter; Process tick. Sub-priority
Long priority; Process priority
Unsigned long signal; Bit mask for signal reception
Unsigned long blocked; Another bit mask for other signals
Unsigned long flags; System status flag. PF_PTRACRED etc.
Int errno; Error code for the last system call
Int debugreg[8]; x86 debug registers for ptrace
Struct exec_domain exec_domain;

각 프로세스들이 emulate 되어야 하는 unix에 대한 기술 정보.
Struct task_struct *next_task;
Struct task_struct *prev_task; Double linked list.
…… Parent & child, memory management
Int pid, pg게, session, leader; Process id, group, session, leader
…… File, timing, semaphore, wait

Linux Kernel (VII)

Embedded Systems, KAIST 17

Data Structure (II)
Process table: struct task_struct *task[NR_TASKS];

Struct task_struct init_task; Start task for double linked list
Struct task_struct current; Current task
Task_struct *current_set[NR_CPUS] SMP

File structure: Struct file { … }
Mode_t f_mode; Access mode: R, W, RW
Loff_t f_pos; Read/write pointer (64-bits)
Unsigned short f_flags; File access control
Unsigned short f_count; Reference counter
Struct *file *f_next, *f_prev; Double linked list
Struct inode *f_inode; Inode structure
Struct file_operations *f_op; File operations table pointer
…

Linux Kernel (VIII)

Embedded Systems, KAIST 18

Data Structure (III)
Queue Wait

Struct wait_queue {
Struct task_struct *task;
Struct wait_queue *next;

}
Semaphore 접근 허가

Struct semaphore {
Int count;
Struct wait_queue *wait;

}
Timer Timed action

Struct timer_list {
Struct timer_list *nest, *prev;
Unsigned long expires;
Unsigned long data;
Void (*function) (unsigned long);

}
…

Linux Kernel (IX)

Embedded Systems, KAIST 19

Scheduler
Scheduler classes Set by sched_setscheduler()

SCHED_FIFO
First-In First_Out
Run from start to finish

SCHED_RR
Round robin
Run during a specified time slot

SCHED_OTHER
Classic Unix scheduling

Schedule() 함수 kernel/sched.c
정기적으로 호출되어아 햐는 routine (Timer interrupt)
높은 우선권의 process 결정

새로운 최우선권 process로 이양.

Linux Kernel (X)

Embedded Systems, KAIST 20

System Call Mechanism
User mode to system mode
Via software interrupt 0x80

Pseudo code system_call(int sys_call_num, sys_call_args) {
SAVE_ALL; // Macro in entry.S
If (sys_call_num >= NR_syscalls)

errno = -ENOSYS;
Else {

If (current->flags & PT_TRACESYS) {
Syscall_trace;
Errno = (*sys_call_table[sys_call_num])(sys_call_args);
Syscall trace;

} else
Errno = (*sys_call_table[sys_call_num])(sys_call_args);

}

Linux Kernel (XI)

Embedded Systems, KAIST 21

System Call Mechanism (II)
Pseudo code for return form system call

If (need_resched) {
Reschedule;
scehdule();
Goto ret_from _sys_call;

}
If (current->singal & ~current->blocked) {

Signal_return;
Do_signal();

}
Exit_now:

RESTORE_ALL;

Linux Kernel (XII)

Embedded Systems, KAIST 22

System Call Examples
Getpid

Asmlikage int sys_getpid(void)
{

Return current->pid;
}

Pause
Asmlinkage int sys_pause(void)

{
current->state = TASK_INTERRUPTIBLE;
schedule();
return –ERESTARTNOHAND;

}

Linux Kernel (XIII)

Embedded Systems, KAIST 23

Memory Manager
Virtual memory management

Memory page
4 Kbytes/page for PC, 8 Kbytes for Alpha

Linear memory mapping
Linear address =

Page directory +
Page middle directory +
Page table +
Offset

Dynamic memory allocation in kernel
Void *kmalloc(size_t size, int priority);
Void kfree(void *obj);

Linux Kernel (XIV)

Embedded Systems, KAIST 24

Inter-Process Communication (IPC)

Kernel Process Network

Resource sharing Data structure,
buffer

Shared memory,
file, mmap

-

Synchronization Wait queue,
semaphore

SysV semaphore,
file locking

-

Connectionless
data exchange

Signal SysV message,
Unix domain
sockets in

datagram mode

Datagram sockets
(UDP)

Connection-
oriented data

exchange

- Pipes, Named
pipes, Unix

domain sockets in
stream mode

Stream sockets
(TCP)

References

Embedded Systems, KAIST 25

Linux Boot Process
Search Internet

Linux Kernel
R. Magnus, et al., “Linux Kernel Internals”, 1999, Addison Wesley

	Embedded SystemsCh 14BLinux Kernel
	Overview
	4. Linux Boot Process
	Linux Boot Process (II)
	Linux Boot Process (III)
	Linux Boot Process (IV)
	Linux Boot Process (V)
	Linux Boot Process (VI)
	Linux Boot Process (VII)
	Linux Boot Process (VIII)
	5. Linux Kernel
	Linux Kernel (II)
	Linux Kernel (III)
	Linux Kernel (IV)
	Linux Kernel (V)
	Linux Kernel (VI)
	Linux Kernel (VII)
	Linux Kernel (VIII)
	Linux Kernel (IX)
	Linux Kernel (X)
	Linux Kernel (XI)
	Linux Kernel (XII)
	Linux Kernel (XIII)
	Linux Kernel (XIV)
	References

