
Embedded Systems

Ch 15
ARM Organization and

Implementation

Byung Kook Kim
Dept of EECS

Korea Advanced Institute of Science and Technology

Summary

Embedded Systems, KAIST 2

ARM architecture
Very little change

From the first 3-micron devices t Acorn Computers, 1983-85
To the ARM6 & ARM7 by ARM Limited, 1990-95

5 stage pipeline
CMOS technology reduced size by ~1/10
Performance of cores improved dramatically
1995- : Separate instruction and data memories

In this chapter
Describes internal architectures
Covers the general principles of operation of 3-state and 5-stage
pipelines

1. 3-Stage Pipeline ARM
Organization

Embedded Systems, KAIST 3

multiply

data out register

instruction

decode

&

control

incrementer

register
bank

address register

barrel
shifter

A[31:0]

D[31:0]

data in register

ALU

control

P
C

PC

A
L
U

b
u
s

A

b
u
s

B

b
u
s

register

ARM with 3-stage pipeline
The register bank

Two read ports: sources
One write port: destination
PC (r15) has an additional read port,
an additional write port: instruction
fetch and fetch address increment.

The barrel shifter
Shift/rotate by any number of bits

ALU
Arithmetic/logic operations

Address register and incrementer
Select and hold memory address.
Sequential addressing

Data register
Data from/to memory

Instruction decoder & control logic

3-Stage Pipeline ARM Organization (II)

Embedded Systems, KAIST 4

The 3-stage pipeline
ARM processors up to the ARM7
Pipeline stages

1. Fetch: The instruction is fetched from memory and placed in the
instruction pipeline.
2. Decode: The instruction is decoded and the datapath control
signals prepared for the next cycle. In this stage, the instruction
‘owns’ the decode logic but not the datapath.
3. Execute: The instruction ‘owns’ the datapath; the register bank is
read, an operand shifted, the ALU result generated and written back
into a destination register.

At any one time, three different instructions may occupy each of
these stages: The hardware in each stage has to be capable of
independent operation.

3-Stage Pipeline ARM Organization (III)

Embedded Systems, KAIST 5

The 3-stage pipeline (II)
Latency: 3-cycles to complete one instruction
Throughput: one instruction per cycle

Single-cycle instruction 3-stage pipeline operation

fetch decode execute

time

1

fetch decode execute

fetch decode execute

2

3
instruction

3-Stage Pipeline ARM Organization (IV)

Embedded Systems, KAIST 6

The 3-stage pipeline (III)
Multi-cycle instruction: ADD then STR

fetch ADD decode execute

time

1

fetch STR decode calc. addr.

fetch ADD decode execute

2

3

data xfer

fetch ADD decode execute4

5 fetch ADD decode execute
instruction

3-Stage Pipeline ARM Organization (V)

Embedded Systems, KAIST 7

The 3-stage pipeline (IV)
Breaks in the ARM pipeline

All instructions occupy the datapath for one or more adjacent cycles

For each cycle that an instruction occupies the datapath, it occupies
the decode logic in the immediately preceding cycle

During the first datapath cycle, each instruction issues a fetch for the
next instruction

Branch instructions flush and refill the instruction pipeline.

PC (Program Counter) behavior
PC must run ahead of the current instruction: 8-bytes ahead.

For most normal purposes the assembler or compiler handles all
details.

Embedded Systems, KAIST 8

2. 5-Stage Pipeline ARM
Organization

Demand for higher performance
3-stage pipeline: cost-effective
Time required to execute a given program:

CPI: Clock per instruction

Two ways to increase performance
Increase the clock rate

Logic in each pipeline to be simplified

Reduce the average number of clock cycles per instruction, CPI
Instructions which occupy more than one slot: To occupy fewer slots
Pipeline stalls caused by dependencies between instructions are reduced.

inst
prog

clk

N CPIT
f
×

=

5-Stage Pipeline ARM Organization (II)

Embedded Systems, KAIST 9

Memory bottleneck
Von Neumann bottleneck

Any stored-program computer with a single instruction/data memory
will have its performance limited by the available memory bandwidth
Fetch an instruction or to transfer data

Solution
Faster memory: more than one value in each clock cycle
Separate memories for instruction and data accesses

Higher performance ARM
5-stage pipeline

Reduce max work in each stage
Higher clock frequency

Separate instruction and data memories
Reduced CPI

Embedded Systems, KAIST 10

5-Stage Pipeline ARM
Organization (III)

The 5-stage pipeline
1. Fetch
2. Decode

3 operand read ports
3. Execute

Shift & ALU
Mem adr for load/store

4. Buffer/data
Data memory access
Buffer for ALU result

5. Write-back
Write-back to register or
memory

Used for many RISC

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate
fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL
MOV pc

5-Stage Pipeline ARM Organization (IV)

Embedded Systems, KAIST 11

Data forwarding
Instruction execution is spread across three pipeline stages

Resolve data dependencies: forwarding paths
When an instruction needs to use the result of one of
predecessors before the result has returned to the register file:
pipeline hazards

Forwarding paths allow results to be passed between stages as soon
as they are available

Exception
Even with forwarding, it is not possible to avoid pipeline stall

LDR rN, […] ; Load rN from somewhere
ADD r2, r1, rN ; and use it immediately

One cycle stall required
Encourage compiler (or assembly programmer) not to put a
dependent instruction immediately after a load instruction

3. ARM Instruction Execution

Embedded Systems, KAIST 12

Data processing instructions

address register

increment

registers
Rd

Rn

PC

Rm

as ins.

as instruction

mult

data out data in i. pipe

(a) r egister - r egister operations

address register

increment

registers
Rd

Rn

PC

as ins.

as instruction

mult

data out data in i. pipe

[7:0]

(b) r egister - immediate operations

ARM Instruction Execution (II)

Embedded Systems, KAIST 13

Data transfer instructions (Store)

address register

increment

registers
Rn

PC

lsl #0

= A / A + B / A - B

mult

data out data in i. pipe

[1 1:0]

(a) 1st cycle - compute addr ess

address register

increment

registers
Rn

Rd

shifter

= A + B / A - B

mult

PC

byte? data in i. pipe

(b) 2nd cycle - stor e data & auto-index

ARM Instruction Execution (III)

Embedded Systems, KAIST 14

Branch instructions (First two cycles)

address register

increment

registers
PC

lsl #2

= A + B

mult

data out data in i. pipe

[23:0]

(a) 1st cycle - compute branch tar get

address register

increment

registers
R14

PC

shifter

= A

mult

data out data in i. pipe

(b) 2nd cycle - save r eturn address

4. ARM Implementation

Embedded Systems, KAIST 15

Design
Register Transfer Level (RTL): Describe datapath section
Finite State Machine (FSM): Describe control section

Clocking scheme
2-phase non-overlapping clocks

Allows use of level-sensitive transparent latches
Data movement is controlled by passing data alternatively through
latches which are open during phase 1 and then during phase 2
Non-overlapping: no race conditions in the circuit

1 clock cycle

phase 1

phase 2

ARM Implementation (II)

Embedded Systems, KAIST 16

Datapath timing
3-stage pipeline datapath timing

read bus valid

shift out valid

ALU out

shift time

ALU time

register
write time

register
read
time

ALU operands
latched

phase 1

phase 2

precharge
invalidates
buses

ARM Implementation (III)

Embedded Systems, KAIST 17

Datapath timing (cont’d)
The minimum datapath cycle time is the sum of:

The register read time
The shifter delay
The ALU delay
The register write set-up time
The phase 2 to phase 1 non-overlapping time.

ALU delay
Dominant
Highly variable

Logic operation: relatively fast
Arithmetic operation: carry propagation. Involve longer paths.

ARM Implementation (IV)

Embedded Systems, KAIST 18

Adder design
Ripple-carry adder (First
ARM processor
prototype)

CMOS AND-OR-INVERT
gates
Worst-case carry path:
32 gates long

4-bit carry look-ahead
(ARM2)

G: carry generate
P: carry propagate
Worst-case carry path:
8 gate delays
AND-OR_INVERT gates
& AND/OR logic

A
B

Cin

sum

Cout

A[3:0]

B[3:0]

Cin[0]

sum[3:0]

Cout[3]

4-bit
adder
logic

P

G

ARM Implementation (V)

Embedded Systems, KAIST 19

ALU functions (ARM2)

ALU
bus

432105

NB
bus

NA
bus

carry
logic

fs:

G

P

fs5 fs4 fs3 fs2 fs1 fs0 ALU output
0 0 0 1 0 0 A and B
0 0 1 0 0 0 A and not B
0 0 1 0 0 1 A xor B
0 1 1 0 0 1 A plus not B plus carry
0 1 0 1 1 0 A plus B plus carry
1 1 0 1 1 0 not A plus B plus carry
0 0 0 0 0 0 A
0 0 0 0 0 1 A or B
0 0 0 1 0 1 B
0 0 1 0 1 0 not B
0 0 1 1 0 0 zero

ARM Implementation (VI)

Embedded Systems, KAIST 20

ARM6 carry-select adder
Computes the sums of various fields of the word for a carry-in of both
and one
The final result is selected by using the carry-in value to control a
multiplexer
Critical path O(log2[word width])

sum[31:16]sum[15:8]sum[7:4]sum[3:0]

s s+1

a,b[31:28]a,b[3:0]

+ +, +1
c

+, +1

mux

mux

mux

ARM Implementation (VII)

Embedded Systems, KAIST 21

ARM6 ALU structure
Carry-select adder does not easily lead to a merging of the arithmetic
and logic functions into a single structure
Separate logic unit runs in parallel with the adder
Multiplexer selects the output.

Z

N

V
C

logic/arithmetic

C infunction

invert A invert B

result

result mux

logic functions

A operand latch B operand latch

XOR gates XOR gates

adder

zero detect

ARM Implementation (VIII)

Embedded Systems, KAIST 22

Carry arbitration adder (ARM9TDMI)
Computes all intermediate carry values using a ‘parallel-prefix’ tree,
which is a very fast parallel logic structure
Recodes the conventional propagate-generate information in terms of
two new variables, u and v.

Combined with that from a neighboring bit position:
(u,v).(u’,v’) = (v+u.u’, v+u.v’) (eq.12)

This combinational operator is associative
u and v can be computed for all the bits in the sum using a regular
parallel prefix tree.
u and v can be used to generate the (Sum, Sum+1) values required for a
hybrid carry arbitration/carry select adder.

A B C u v

0 0 0 0 0

0 1 u n k n o w n 1 0

1 0 u n k n o w n 1 0

1 1 1 1 1

ARM Implementation (IX)

Embedded Systems, KAIST 23

The barrel shifter
Shift time contributes directly to the datapath cycle time
Cross-bar switch matrix is used to steer each input to the
appropriate output
4x4 switch ->
32x32 switch for ARM.

no shiftright 1right 2right 3

left 1

left 2

left 3

in[3]

in[2]

in[1]

in[0]

out[0] out[1] out[2] out[3]

ARM Implementation (X)

Embedded Systems, KAIST 24

Multiplier design
Older ARM cores include low-cost multiplication hardware that supports
only the 32-bit result multiply and multiply-accumulate instructions

Uses the main datapath iteratively – shift & ALU
Modified Booth’s algorithm to produce the 2-bit product
Overhead of few % area of the ARM core

Recent ARM cores have high-performance multiplication hardware and
support the 64-bit result multiply and multiply-accumulate instructions

Carry-in Multiplier Shift ALU Carry-out
0 x 0 LSL #2N A + 0 0

x 1 LSL #2N A + B 0
x 2 LSL #(2N + 1) A – B 1
x 3 LSL #2N A – B 1

1 x 0 LSL #2N A + B 0
x 1 LSL #(2N + 1) A + B 0
x 2 LSL #2N A – B 1
x 3 LSL #2N A + 0 1

ARM Implementation (XI)

Embedded Systems, KAIST 25

High-speed multiplier
Carry-save adder

Carries only propagate across one bit per addition stage
Much shorted logic path than the carry-propagate adder
Can be performed in a single cycle
Produces a sum in redundant binary representation

+
A B Cin

Cout S
(a) +

A B Cin

Cout S
+

A B Cin

Cout S
+

A B Cin

Cout S

+
A B Cin

Cout S
(b) +

A B Cin

Cout S
+

A B Cin

Cout S
+

A B Cin

Cout S

ARM Implementation (XII)

Embedded Systems, KAIST 26

High-speed multiplier (cont’d)
Several layers of carry-save adder in series, each handling one
partial product
4 layers of adders
Can multiply 8 bits/clock
More dedicated hardware

160 bits of shift register
128 bits carry-save
adder logic
10% of the simpler
processor core

Speed up multiplication
by a factor of ~3
Added functionality
of the 64-bit result.

Rs >> 8 bits/cycle

carry-save adders

partial sum

partial carry

initialization for MLA
registers

Rm

ALU (add partials)

rotate sum and
carry 8 bits/cycle

ARM Implementation (XIII)

Embedded Systems, KAIST 27

The register bank
1 Kbits of data: 31 general-
purpose 32-bit registers

ARM6 register cell circuit ->
Works well with 5V supply

ARM register bank floorplan
->

1/3 of total transistor count
of simpler ARM cores

Much denser than logic
functions due to higher
regularity.

A bus
B bus

ALU bus

write
read

B
read

A

A bus read decoders

B bus read decoders

write decoders

register cellsPC

Vdd

Vss

ALU
bus

PC
bus

INC
bus

ALU
bus

A bus

B bus

ARM Implementation (XIV)

Embedded Systems, KAIST 28

Datapath layout
Constant pitch per bit

Order of the function
blocks minimize the
number of additional buses
passing over the more
complex functions.

address register

incrementer

register bank

multiplier

ALU

shifter

data in

instruction pipe

data out

A B

W

instruction

Din

shift out

PC

Ad
inc

ARM Implementation (XV)

Embedded Systems, KAIST 29

Control structures
Three structural components

An instruction decoder PLA (programmable logic array)
Use some of the instruction bits & internal cycle counter

Distributed secondary control associated with each of the major datapath
function blocks

Uses the class information
from the main decoder PLA
Select other instruction bits
and/or processor state infor-
mation to control the datapath

Decentralized control units for
specific instructions that take a
variable number of cycles to
complete

Main decoder PLA locks into
a fixed state.

decode
PLA

cycle
count

multiply
control

load/store
multiple

address
control

register
control

ALU
control

shifter
control

instruction

coprocessor

5. The ARM Coprocessor
Interface

Embedded Systems, KAIST 30

ARM supports
A general-purpose extension of its instruction set through the
addition of hardware coprocessors
Software emulation of these coprocessors through the undefined
instruction trap

Coprocessor architecture
Supports for up to 16 logical processors
Each coprocessor can have up to 16 private registers of any
reasonable size; they are not limited to 32 bits
Coprocessors use a load-store architecture, with instructions

to perform internal operations on registers,
to load and save registers from and to memory, and
To move data to or from an ARM register.

The ARM Coprocessor Interface (II)

Embedded Systems, KAIST 31

ARM7TDMI coprocessor interface
Based on ‘bus watching’

The coprocessor is attached to a bus where the ARM instruction
stream flows into the ARM

Handshake between the ARM and the coprocessor
Cpi’: CoProcessor Instruction (from ARM to all coprocessors)

ARM has identified a coprocessor instruction and wishes to execute it

Cpa: CoProcessor Absent (from the coprocessors to ARM)
Tells the ARM that there is no coprocessor present

Cpb: CoProcessor Busy (from the coprocessors to ARM)
Tells the ARM the coprocessor cannot begin executing the instruction yet.

Both ARM and the coprocessor must generate their respective
signals autonomously.

References

Embedded Systems, KAIST 32

ARM organization and implementation
Steve Furber, “ARM System-on-chip architecture”,
Second Edition, Addison Wesley, 2000.

	Embedded SystemsCh 15ARM Organization and Implementation
	Summary
	1. 3-Stage Pipeline ARM Organization
	3-Stage Pipeline ARM Organization (II)
	3-Stage Pipeline ARM Organization (III)
	3-Stage Pipeline ARM Organization (IV)
	3-Stage Pipeline ARM Organization (V)
	2. 5-Stage Pipeline ARM Organization
	5-Stage Pipeline ARM Organization (II)
	5-Stage Pipeline ARM Organization (III)
	5-Stage Pipeline ARM Organization (IV)
	3. ARM Instruction Execution
	ARM Instruction Execution (II)
	ARM Instruction Execution (III)
	4. ARM Implementation
	ARM Implementation (II)
	ARM Implementation (III)
	ARM Implementation (IV)
	ARM Implementation (V)
	ARM Implementation (VI)
	ARM Implementation (VII)
	ARM Implementation (VIII)
	ARM Implementation (IX)
	ARM Implementation (X)
	ARM Implementation (XI)
	ARM Implementation (XII)
	ARM Implementation (XIII)
	ARM Implementation (XIV)
	ARM Implementation (XV)
	5. The ARM Coprocessor Interface
	The ARM Coprocessor Interface (II)
	References

