Embedded Systems

Ch 16 Sensor Network

Byung Kook Kim Dept of EECS Korea Advanced Institute of Science and Technology

Contents

- 1. Introduction to Sensor Network
- 2. Sensor Network Applications
- **3.** A Hierarchical Sensor Network
- 4. Sensor Network Challenges
- **5.** Sensor Network Requirements
- 6. Ad Hoc Sensor Networks
- 7. MOTE
- 8. ATmega128
- 9. TinyOS

1. Introduction to Sensor Network

Overview of Sensor Network

- Advances in hardware and wireless network technologies have created low-cost, low-power, multifunctional miniature sensor devices.
- These devices make up hundreds or thousands of ad hoc tiny sensor nodes spread across a geographical area.
- These sensor nodes collaborate among themselves to establish a sensing network.
- A sensor network that can provide access to information anytime, anywhere by collecting, processing, analyzing and disseminating data.
- Thus, the network actively participates in creating a smart environment.

Introduction to Sensor Network (II)

Sensor Network Applications

- Sensor networks promise to revolutionize sensing in a wide range of application domains.
- This is because of their reliability, accuracy, flexibility, costeffectiveness and ease of deployment.
- Smart sensors can offer vigilant surveillance and can detect and collect data concerning any sign of machine failure, earthquakes, floods and, even, a terrorist attack.
- Sensor networks enable:
 - 1) information gathering,
 - 2) information processing, and
 - 3) reliable monitoring of a variety of environments for both civil and military applications.

Introduction to Sensor Network (III)

Features of Sensor Network

- The architecture of the sensor node's hardware consists of five components:
 - sensing hardware, processor, memory, power supply and transceiver.
- They can self-organize and can adapt to support several applications.
 - These devices are easily deployed because no infrastructure and human control are needed.
 - They sense, compute and actuate into the physical environments.
- Each sensor node has wireless communication capability and sufficient intelligence for signal processing and for disseminating the data.
- The limited energy, computational power, and communication resources of a sensor node requires the use of a huge number of sensor nodes in a wider region.

Introduction to Sensor Network (IV)

Communication

- Communication in sensor networks is not typically end to end.
- Energy is typically more limited in sensor networks than in other wireless networks because of the nature of the sensing devices and the difficulty in recharging their batteries.
- Lastly, studies have shown that current commercial Bluetooth devices are unsuitable for sensor network applications because of their energy requirements, and expected higher costs than sensor nodes.

2. Sensor Network Applications

Examples of possible applications

- Detecting environmental hazards, monitoring remote terrain, or even customer behavior surveillance are among many sensor network applications.
- Sensors are deployed to analyze remote locations (the motion of a tornado, fire detection in a forest);
- Sensors are attached to taxi cabs in a large metropolitan area to study the traffic conditions and plan routes effectively;
- Wireless parking lot sensor networks that determine which spots are occupied and which spots are free;
- Wireless surveillance sensor networks for providing security in a shopping mall, parking garage or at some other facility;
- Military sensor networks to detect, locate or track enemy movements, and
- Sensor networks can increase alertness to potential terrorist threats.

3. A Hierarchical Sensor Network

The tactical military network architecture

 consists of a group of units (i.e., clusters) managed by commanders (i.e., parent nodes).

8

A Hierarchical Sensor Network (II)

Commander

- These commanders receive orders from *headquarters* (i.e., the sink node) and, in return, send back their report.
- The commanders send the order received from headquarters to their *generals* (i.e., cluster heads).

General

- Every general is responsible for a group of *soldiers* (i.e., children) in a unit.
- After hearing the messages from their soldiers, generals send their observations to their commanders.

Soldiers

- Soldiers communicate locally (i.e., within a unit) with their counterparts or their general.
- Soldiers in a unit cannot communicate with generals from other units whereas generals can only communicate among themselves.

A Hierarchical Sensor Network (III)

Sensing & action

- In a battlefield, soldiers in a unit contact their general to notify the general about a specific observation in their unit.
- The general, then, can issue an order to his soldiers to take an action regarding their observation, or can contact his commander for an opinion.
- In case of decisive actions, such as an *attack* command, only headquarters can order a decisive action based on the information from the commanders.

4. Sensor Network Challenges

- Challenges in hardware design, communication protocols and applications design face sensor network technology to make it a reality.
- Extending the lifetime of the sensor network and building an intelligent data collecting
- Other challenges
 - Sensor networks' topology changes very frequently;
 - Sensors use a broadcast communication paradigm whereas most networks are based on point-to-point communications;
 - Sensors are very limited in power, computational capacities and memory;
 - Sensors are very prone to failures;
 - Sensors may not have global identification (ID) because of the large amount of overhead;
 - Sensors are densely deployed in large numbers. The problem can be viewed in terms of collision and congestion:
 - Ad hoc deployment requires that the system identifies and copes with the resulting distribution and connectivity of nodes, and
 - Dynamic environmental conditions require the system to adapt over time to changing connectivity and system stimuli.

5. Sensor Network Requirements

- Large number of sensors:
 - To make use of the cheap small-sized sensors, sensor networks may contain thousands of nodes.
 - Scalability and managing these huge numbers of sensors is a major issue.
 - Clustering is one solution to this problem.
 - In clustering, neighbor sensors join to build one cluster (group) and elect a cluster head to manage this group.
- Low energy use:
 - In many applications, the sensor nodes will be deployed in a remote area in which case servicing a node may not be possible.
 - Thus, the lifetime of a node may be determined by the battery life, thereby requiring minimal energy expenditure. (Recharging a large number of sensor batteries would be expensive and time consuming.)
- Efficient use of the small memory:
 - When building sensor networks, issues such as routing-tables, data replication, security and such should be considered to fit the small size of memory in the sensor nodes.

Sensor Network Requirements (II)

- Data aggregation:
 - The huge number of sensing nodes may congest the network with information.
 - To solve this problem, some sensors such as the cluster heads can aggregate the data, do some computation (e.g., average, summation, highest, etc.), and then broadcast the summarized new information.
- Network self-organization:
 - Given the large number of nodes and their potential placement in hostile locations, it is essential that the network be able to self-organize itself.
 - Moreover, nodes may fail (either from lack of energy or from physical destruction), and new nodes may need to join the network.
 - Therefore, the network must be able to periodically reconfigure itself so that it can continue to function.
 - Individual nodes may become disconnected from the rest of the network, but a high degree of connectivity overall must be maintained.

Sensor Network Requirements (III)

• Collaborative signal processing:

- Yet another factor that distinguishes these networks from *Mobile Ad-hoc Networks* (MANETs) is that the end goal is the detection/estimation of some event(s) of interest, and not just communication.
- To improve the detection performance, it is often quite useful to fuse data from multiple sensors.
- This data fusion requires the transmission of data and control messages.
- This need may put constraints on the network architecture.
- *Querying ability:*
 - Two types of addressing in sensor network;
 - data-centric
 - a query will be sent to specific region in the network.
 - address-centric
 - the query will be sent to an individual node.

6. Ad Hoc Sensor Networks

- An ad hoc sensor network is a collection of sensor nodes forming a temporary network without the aid of any central administration or support services.
 - There is no stationary infrastructure such as base stations.
 - In general, the sensor nodes use wireless radio frequency (RF) transceivers as their network interface and communicate with each other using multi-hop wireless links.
 - Each sensor node in the network also acts as a router, forwarding data packets for its neighbor nodes.
- Ad hoc networks must deal with frequent changes in topology.
 - Sensor nodes are prone to failure and also
 - new sensor nodes may join the network to compensate the failed nodes or to maximize the area of interest.
 - A central challenge in the design of the ad hoc sensor network:
 - The development of self-organizing sensor network and dynamic routing protocols that can efficiently find routes between two communicating nodes.

Ad Hoc Sensor Networks (II)

Cluster head

- For the tiny sensors to coordinate among themselves to achieve a large sensing task in a less power consumption, they should work in a cluster.
- Each cluster assigns a *cluster head* to manage its sensors.
- The advantages of cluster heads are:
 - Clustering allows sensors to efficiently coordinate their local interactions in order to achieve global goals;
 - Scalability;
 - Improved robustness;
 - More efficient resource utilization;
 - Lower energy consumption; and
 - Robust link or node failures and network partitions.

Ad Hoc Sensor Networks (III)

Sensor Network Architecture

Ad Hoc Sensor Networks (IV)

Sensor Network Architecture (II)

- Physical layer
 - Physical nodes: sinks, children nodes, cluster heads, parents
- Data layer
 - Query, data, information
- Service layer
 - One big wireless ad hoc network
- Action
 - Sink node
 - Broadcasts query
 - Detect environment: change in heat, location, speed, etc
 - Broadcasts data to neighboring sensor nodes
 - Children nodes
 - Retransfers data
 - Cluster head
 - Process and aggregate data to get information
 - Broadcasts the information to the sink nodes

7. MOTE

MICA2

Wireless Measurement System

- ▼ 3rd Generation, Tiny, Wireless Platform for Smart Sensors
- Designed Specifically for Deeply Embedded Sensor Networks
- ▼ > 1 Year Battery Life on AA Batteries (Using Sleep Modes)
- ▼ Wireless Communications with Every Node as Router Capability
- ▼ 315, 433 or 868/916 MHz Multi-Channel Radio Transceiver
- Expansion Connector for Light, Temperature, RH, Barometric Pressure, Acceleration/Seismic, Acoustic, Magnetic, and other Crossbow Sensor Boards

MOTE (II)

Features of MICA2

- 868/916MHz, 433 or 315MHz multi-channel transceiver with extended range
- TinyOS (TOS) Distributed Software Operating System v1.0 with improved networking stack and improved debugging features
- Support for wireless remote reprogramming
- Wide range of sensor boards and data acquisition add-on boards
- Compatible with MICA2DOT (MPR500) quarter-sized Mote.

MPR400CB Block Diagram

MOTE (III)

MICA2DOT

- Wireless Micro-sensor Mote
- 3rd Generation, Quarter-Sized (25mm), Wireless Platform for Smart Sensors
 - ▼ Designed Specifically for Deeply Embedded Wireless Sensor Networks
 - ▼ Battery-Powered, Low-Mass
 - ▼ Fits Anywhere, Wireless Reprogrammable
 - ▼ Wireless Communications with Every Node as Router Capability
 - 868/916 MHz, 433 MHz or 315 MHz Multi-channel Radio Transceiver (MICA2 Compatible)

Features of MICA2DOT

MPR500CA Block Diagram

- 868/916MHz, 433MHz or 315MHz multi-channel transceiver with extended range
- TinyOS (TOS) Distributed Software Operating System v1.0 with improved networking stack and improved debugging features
- Support for wireless remote reprogramming
- Compatible with MICA2 (MPR400) Mote
- On Board Temperature Sensor, Battery Monitor, and LED.

8. ATmega128

8-bit Microcontroller with 128K Bytes In-System Programmable Flash

Features

- High-performance, Low-power AVR® 8-bit Microcontroller
- Advanced RISC Architecture
 - 133 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers + Peripheral Control Registers
 - Fully Static Operation up to 16 MIPS Throughput at 16 MHz
 - On-chip 2-cycle Multiplier
- Nonvolatile Program and Data Memories
 - 128K Bytes of In-System Reprogrammable Flash
 - Optional Boot Code Section with Independent Lock Bits
 - In-System Programming by On-chip Boot Program
 - 4K Bytes EEPROM
 - 4K Bytes Internal SRAM
 - Up to 64K Bytes Optional External Memory Space
 - Programming Lock for Software Security
 - SPI Interface for In-System Programming.

ATmega128 (II)

Features (II)

- JTAG (IEEE std. 1149.1 Compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses and Lock Bits through the JTAG Interface
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
 - Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Two 8-bit PWM Channels
 - 6 PWM Channels with Programmable Resolution from 2 to 16 Bits
 - Output Compare Modulator
 - 8-channel, 10-bit ADC
 - Byte-oriented Two-wire Serial Interface
 - Dual Programmable Serial USARTs
 - Master/Slave SPI Serial Interface
 - Programmable Watchdog Timer with On-chip Oscillator
 - On-chip Analog Comparator.

ATmega128 (III)

Features (III)

- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated RC Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,

and Extended Standby

- Software Selectable Clock Frequency
- ATmega103 Compatibility Mode Selected by a Fuse
- Global Pull-up Disable
- I/O and Packages
 - 53 Programmable I/O Lines
 - 64-lead TQFP and 64-pad MLF
- Operating Voltages
 - 2.7 5.5V for ATmega128L
 - 4.5 5.5V for ATmega128
- Speed Grades
 - 0 8 MHz for ATmega128L
 - 0 16 MHz for ATmega128.

9. TinyOS

TinyOS

- An open-source operating system designed for wireless embedded sensor networks.
- A component-based architecture
 - Enables rapid innovation and implementation while minimizing code size as required by the severe memory constraints inherent in sensor networks.
- TinyOS's component library
 - Network protocols, distributed services, sensor drivers, and data acquisition tools
- Event-driven execution model
 - Enables fine-grained power management yet allows the scheduling flexibility made necessary by the unpredictable nature of wireless communication and physical world interfaces.

TinyOS (II)

TinyOS (cont'd)

- Ported to over a dozen platforms and numerous sensor boards.
 - A wide community uses it in simulation to develop and test various algorithms and protocols.
 - Over 10,000 downloads.
 - Over 500 research groups and companies are using TinyOS on the Berkeley/Crossbow Motes.
 - Numerous groups are actively contributing code to the sourceforge site and working together to establish standard, interoperable network services built from a base of direct experience and honed through competitive analysis in an open environment.
- Web site: <u>http://www.tinyos.net</u>

References

- Sensor network
 - M. Tubaishat and S. Madria, "Sensor Networks: An overview", IEEE Potentials, April 2003.
- MOTE
 - <u>http://www.corssbow.com</u>
- ATmega128
 - http://www.atmel.com
- TinyOS
 - http://www.tinyos.net

