Embedded Systems Ch 1. Introduction to Embedded Systems

Part A

Byung Kook Kim
Dept of EECS
Korea Advanced Institute of Science and
Technology

Overview

- 1.1 임베디드 시스템 정의
 - What is the embedded system?
- 1.2 임베디드 시스템 특징
 - Characteristics of embedded system
- 1.3 임베디드 시스템 응용제품
 - Embedded system products
- 1.4 임베디드 시스템 개발동향
 - Development trends of embedded system
- 1.5 Processor Architecture and Organization
- 1.6 Abstraction in Hardware Design

1.1 임베디드 시스템 정의

- 시스템 (System)
 - 내부는 알려지지 아니한 black box
 - 안으로 들어가는 입력과 밖으로 나오는 출력이 정의됨
 - 입력과 출력의 관계로 시스템의 동작을 기술함

임베디드 시스템 정의 []]]

- 실시간 시스템 (Real-time system)
 - 지정된 시간 내의 응답이 요구되는 시스템
 - Hard real-time system
 - 응답시간 이후의 결과는 치명적인 시스템
 - 예: 미시일 제어 장치, 비행기 항법 장치
 - Soft real-time system
 - 응답시간에 만족하지 않더라도 치명적인 결함을 가져오지는 않는 시스템
 - 예: bank transfer. 정보화 기기, 정보 가전

임베디드 시스템 정의 [III]

- 임베디드 시스템 (Embedded system, 내장형 시 스템)
 - 특정 목적을 수행하기 위해 설계된 기기를 제어하기 위한 hardware와 software가 내장된 전자 응용 시스 템
 - Electronic systems including hardware and software to control systems designed for specific purposes
 - Remarks
 - Microprocessor or microcontroller based system
 - Hardware 및 software의 유기적 결합을 통한 기능 구현
 - PC is a general-purpose system.

1.2 임베디드 시스템 특징

- 전문성과 범용성이 결합된 다양한 기능을 수행하는 제어 장치
 - 시스템의 사용목적이 제한되어있다
 - 자동차의 ECU (Engine Control Unit)
 - ▶ 엔진의 효율높은 제어
 - ▶ 엔진의 점화 타이밍, 밸브 등의 조작을 제어
 - 전자레인지 제어시스템
 - 최적의 음식을 조리하기 위해 조리 온도, 시간 등을 제어
 - 하드웨어 기술의 발달
 - 무어의 법칙: 컴퓨터 하드웨어는 **3**년에 **4**배의 속도로 집적도가 증가
 - 복합 고도 기능화
 - 제한된 임무를 보다 효율적이고 유연성 있게 수행
 - 내부 소프트웨어의 갱신 및 데이터의 저장
 - 휴대폰: 개인정보 입력, 일정 관리, 인터넷

임베디드 시스템 특징 (III)

- 산업제어장비로부터 네트워크 장비에 이르는 모든 분야에 활용되는 범용화된 기술
 - 초기: 4/8/16 bit microprocessor
 - Assembly language, C language
 - 순차적으로 동작하는 응용 소프트웨어
 - Calculator
 - 32/64 bit microprocessor
 - 메모리 가격의 하락
 - Soc (System on a Chip) 기술의 발달
 - 계산능력의 강화, 네트워킹, 멀티태스킹
 - 운영체제 (operating system)를 기반으로 하는 임베디드 시스템 구성

임베디드 시스템 특징 (III)

- 정보화 시대에서 모바일 컴퓨팅을 위한 기본기술
 - Hardware 구동용 platform software에서 응용 software로 기술 및 제품의 비중이 증가
 - 사용 가능한 운영체제의 일반화
 - 제품개발자: 응용 프로그램에 더 많은 시간을 할애하여 제품개발시간 단축 및 부가가치 증대
 - Hardware의 발전
 - SoC (System on a chip)기술의 발전
 - 주변기기 및 memory 등이 microprocessor에 내장 됨

1.3 Embedded System 응용 제품

- ▶ 산업용 장비
 - 가장 전통적인 embedded system
 - Mini-computer를 이용한 digital control 분야의 발달
 - 우주항공기술의 발달
 - 자동차
 - BMW-7 series: 65 microprocessors. CAN (Controller Area Network)
 - Benz S class: 63 microprocessors
 - 공장자동화
 - PLC (Programmable Logic Controller) 1974
 - ▶ 가장 많이 사용되는 산업용 제어장치
 - Network 기능의 추가
 - 공장 자동제어 시스템
 - 생산성 증대: 인건비 감소, 오류 감소, 품질의 균일화, 생산기간 단축
 - 자동화 조립 라인
 - 로봇, conveyor belt

Embedded System 응용제품 (II)

- 서비스 로봇
 - Humanoid robot
 - 인간을 닮은 사지: 보행, 대화 기능
 - 청소 로봇
 - 가시를 대신하는 로봇
 - 장애인 보조 로봇
 - 장애인의 보조. 삶의 질 향상
 - 중요기술
 - Microprocessor 이용
 - 인공지능 등의 알고리즘을 내장한 임베디드 시스템 기술
- 기타
 - 의학 기기
 - 내시경. 수술 로봇
 - 교통제어 기기
 - Intelligent Transportation System

Embedded System 응용제품 (III)

- 정보화 기기
 - 휴대폰
 - PDA
 - 휴대형 개인정보 단말기
 - LCD display, touch screen
 - 일정관리, 주소록, 메모장, 무선 network
 - Home PDA
 - 집안의 온도, 습도, 조도 등의 점검 및 제어
 - 스마트 폰
 - Handheld PC
 - IC card

Embedded System 응용 제품 (IV)

- 정보가전기기
 - 유무선 가정 network
 - 인공지능 스탠드
 - 주위의 밝기에 따라 조도 조절
 - 인터넷 냉장고
 - Network 기능을 이용한 정보의 검색 및 표시
 - 디지털 TV
 - Set-top box
 - 전자 레인지, 전기 밥솥, 진공청소기, 에어컨, 세탁기 등

Embedded System 응용 제품 (V)

- 네트워크 장비
 - Set-top box
 - 가정용 정보 network gateway
 - Embedded Linux 활용
 - Local Area Network (LAN) 장비
 - Switch
 - Hub
 - NIC: network Interface Controller
 - CDMA 및 무선화 기술의 발전
 - 새로운 network 시장의 창출

1.4 임베디드 시스템 개발동향

- Computing 기술의 발전
 - 70년대: host comruting
 - Unix host programming 및 수행. Host와 terminals
 - 90년대: client server
 - Server 중심. Client의 서비스 요청. World Wide Web
 - 00년대: Network computing
 - Mobile, Ubiquitous computing. Post-PC
 - Embedded 시스템 기술의 보편화
- Hardware 측면
 - SoC 기술이 주된 기술
 - 소형화, 전력소모 감소, 신뢰성 확보
 - બା: S3C4530 network processor

임베디드 시스템 개발동향 (III)

- Software 측면
 - Cross development environment (교차 개발 환경)
 - Host: PC. Windows or Linux
 - Cross compiler
 - Target: Embedded microprocessor
 - Downloading and execution
 - Embedded operating system (임베디드 운영 체제)
 - Application program (응용 프로그램)
 - IDE (Integrated Development Environment)
 - Ex: Tornado Development environment for VxWorks kernel
 - Linux open source
 - 제품의 조기 출시

1.5 Processor Architecture and Organization

- All modern general-purpose computers
 - Principles of stored-program digital computer
 - Originated from Princeton Institute of Advanced studies (1940s)
 - Implemented in the 'Baby' machine at U Manchester (1948)
 - Technology advances
 - Vacuum tubes, transistors, IC, VLSI
 - New insights
 - Computer architecture
 - Computer organization

Processor Architecture and Organization (II)

Computer architecture

- Describes user's view of the computer
- Instruction set, visible registers, memory management table structures, and exception handling model

Computer organization

- Describes the user-invisible implementation of the architecture
- Pipeline structure, transparent cache, table-walking hardware, and translation look-aside buffer

Advances

- Virtual memory (1960s)
- Transparent cache memory
- Pipelining
- RISC

Processor Architecture and Organization (III)

Processor

- Finite-state automaton that executes instructions held in a memory
- The state of the system is defined
 - by the values held in the memory locations
 - The values held in certain registers within the processor

Processor Architecture and Organization (IV)

- Stored-program computer
 - Keeps instructions and data in the same memory system
 - Allowing the instructions to be treated as data when necessary
 - Enables the processor itself to generate instructions which it can subsequently execute (self-modifying code)
 - Very difficult to debug
 - Not for programs in ROM
 - Loads a new program from disk (overwriting an old program)
- Computer applications
 - Programmability: universal
 - Embedded, desk top, mainframe

1.6 Abstraction in Hardware Design

Modern microprocessor

- Several million transistors each of which can switch a hundred million times a second.
 - Ex) Scrolling a screen
- A single error amongst these transitions is likely to cause the machine to collapse into a useless state

Transistor

- Electron movement described by quantum mechanics with probabilities
- Voltage and current on its terminals perform amplification or switching

Abstraction in Hardware Design (II)

Logic gates

- A set of transistors is wired into a particular structure
- CMOS (Complementary Metal Oxide Semiconductor) NAND gate
 - 2 inputs A, B and 1 output
 - If A and B are both near to Vdd (true), the output will be near to Vss.
 - If either A or B is near to Vss (false), the output will be near to Vdd.
 - NAND Boolean function:

$$Output = \neg(A \land B)$$

Abstraction in Hardware Design (III)

- Logic symbol
 - Symbol representing Boolean function in a circuit schematic
- Truth table
 - Describes the logic function of the gate
 - Encompasses everything that the logic designer need to know about the gate for most purposes
 - True='1'; False='0'
- Logic symbol and truth table of NAND gate:

A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

Logic symbol

Truth table

Abstraction in Hardware Design (IV)

- The gate abstraction
 - Greatly simplifies the process of designing circuits with great number of transistors
 - Removes the need to know that the gate is built from transistors
 - Implementation technology will affect the performance of the circuit, but it has no effect on its function
 - Supported by the transistor-level designer
 - As perfectly as possible
 - Isolate the logic circuit designer from the need to understand the transistor equations.

Abstraction in Hardware Design (V)

- Levels of abstraction
 - Essential behaviors and hide unnecessary details
- Typical hierarchy of abstraction at the hardware
 - Transistors
 - Logic gates, memory cells, special circuits
 - Single-bit adders, multiplexers, decoders, flip-flops
 - Word-wide adders, multiplexers, decoders, registers, buses
 - ALUS (Arithmetic-Logic Units), barrel shifters, register banks, memory blocks
 - Processor, cache and memory management organizations
 - Processors, peripheral cells, cache memories, memory management units
 - Integrated system chips
 - Printed circuit boards
 - Mobile telephones, PCs, engine controllers

Abstraction in Hardware Design (VI)

- Gate-level design
 - Libraries of useful functions
 - Adders, multiplexers, decoders: combinational circuits
 - Flip-flops and latches: sequential circuits
 - Registers
- Theoretic background
 - Boolean algebra
 - Combinational circuit design
 - Sequential circuit design