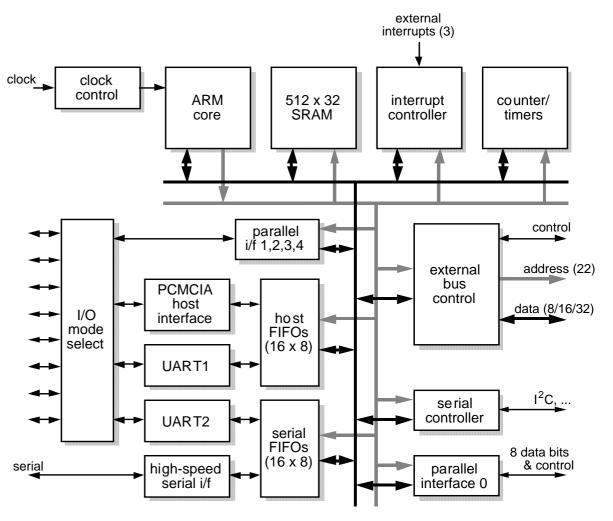
Ch 1. Introduction to Embedded Systems Part B Embedded ARM Applications

Byung Kook Kim Dept of EECS Korea Advanced Institute of Science and Technology

Overview


Trends in embedded system design

- Integrate all the major system functions apart from some memory components into a single chip
- Benefits in terms of component costs, reliability, and power-efficiency
- Advance in semiconductor process technology: millions of transistors built cheaply
- The era of complex systems on a single chip

Several examples of ARM-based 'system on chips'

1.7 The VLSI Ruby II Advanced Communication Processor

- Ruby II advanced communication processor chip
 - VLSI Technology, Inc
 - Organization ->

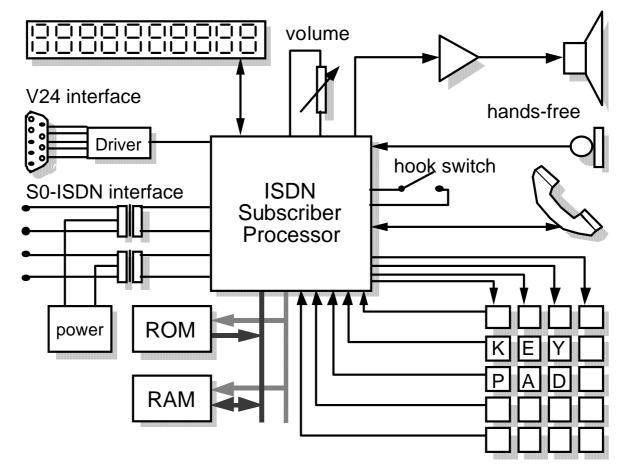
The VLSI Ruby II Advanced Communication Processor (II)

Ruby II organization

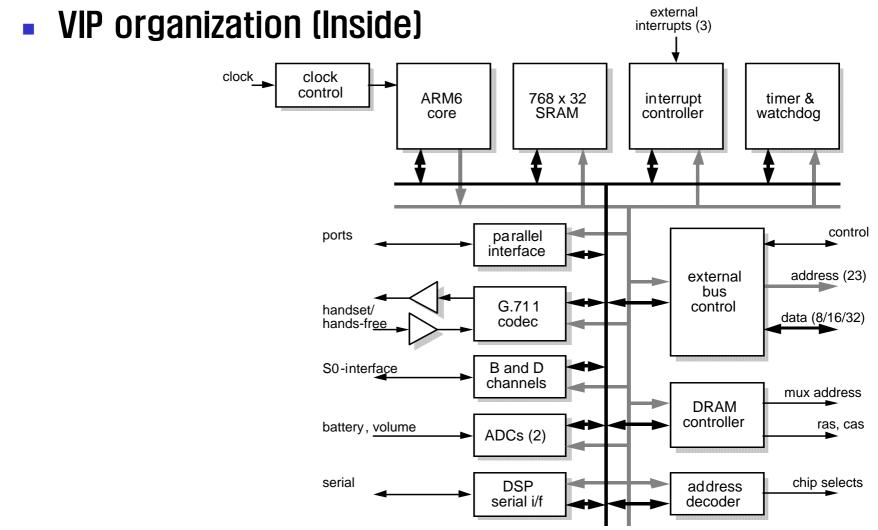
- Based on an ARM core
- 2 Kbytes of fast (zero wait state) on-chip SRAM
 - Critical routines can be loaded to get the best performance and minimum power consumption
- Peripheral modules
 - PCMCIA interface
 - Four byte-wide parallel interfaces
 - Two UARTs
 - Byte-wide FIFO buffers
 - Synchronous communications controller
 - Serial controller: I²C for battery-backed RAM, real-time clock, E²PROM, and audio codec
- External bus interface
 - 8-, 16-, and 32-bit data buses and flexible wait state generation
- Counter/timer block
 - Three 8-bit counters connected to a 24-bit prescaler
- Interrupt controller
 - Programmable control of all on- and off-chip interrupt sources

The VLSI Ruby II Advanced Communication Processor (III)

- Ruby II power-management modes
 - 1. On-line all circuits are clocked at full speed
 - 2. Command the ARM core runs with 1 to 64 wait states but all other circuitry runs at full speed. An interrupt switches the system into on–line mode immediately.
 - 3. Sleep all circuitry is stopped apart from the timers and oscillators. Particular interrupts return the system to on–line mode.
 - 4. Stopped all circuits (including the oscillators) are stopped. Particular interrupts return the system to on–line mode.
- Packaging
 - 144- and 176-pin thin quad flat packs
 - Up to 32 MHz at 5 V.
 - At 20 MHz, 30 mA in on-line mode, 7.9 mA in command mode, 1.5 mA in sleep mode, and 150 uA in stop mode.


1.8 The VLSI ISDN Subscriber Processor (VIP)

VIP


- Programmable engine for ISDN (Integrated Services Digital Network, a digital telephony standard) subscriber communications
 - Developed by Hagenuk GmbH
 - Licensed to VLSI Technology for sale as ASSP (Application Specific Standard Part)
- Incorporates most of the circuitry required to implement a fullfeature ISDN terminal, supporting voice, data, and video services
 - ISDN S0-interface, a numeric keypad, a number display, a microphone and an earphone
- Applications
 - ISDN terminal equipment: PABX telephones, H.320 videophones, integrated PC communications
 - ISDN to DECT (Digital European Cordless Telephone) controllers
 - ISDN to PCMCIA communication cards.

The VLSI ISDN Subscriber Processor (II)

Typical VIP system configuration

The VLSI ISDN Subscriber Processor (III)

The VLSI ISDN Subscriber Processor (IV)

Memory interface

- Supports 8-, 16-, and 32-bit off-chip static RAMs and ROMs and 16- and 32-bit dynamic RAMs
- Divided into 4 ranges, each with programmable number of wait states
- 3 Kbyte on-chip RAM
- SO-interface
 - Connection to an SO-interface bus via isolating transformers and surge protection
 - PLL for data and clock recovery, framing, and low-level protocols
 - 192 Kbit/s raw data includes two 64 Kbit/s B channels (8-bit 8 KHz speech samples) and one 16 Kbit/s D channel (control purposes)
- Codec
 - G.711 codec
 - On-chip analog front end: Direct connection to a telephone handset and a hands-free microphone and speaker
 - Input and output independent programmable gains
 - Amplification stages have power-down modes to save power.

The VLSI ISDN Subscriber Processor (V)

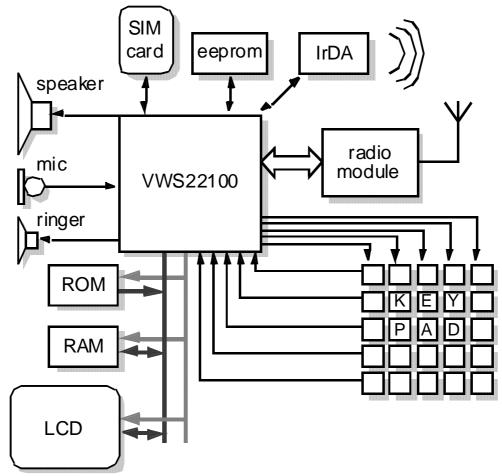
ADCs

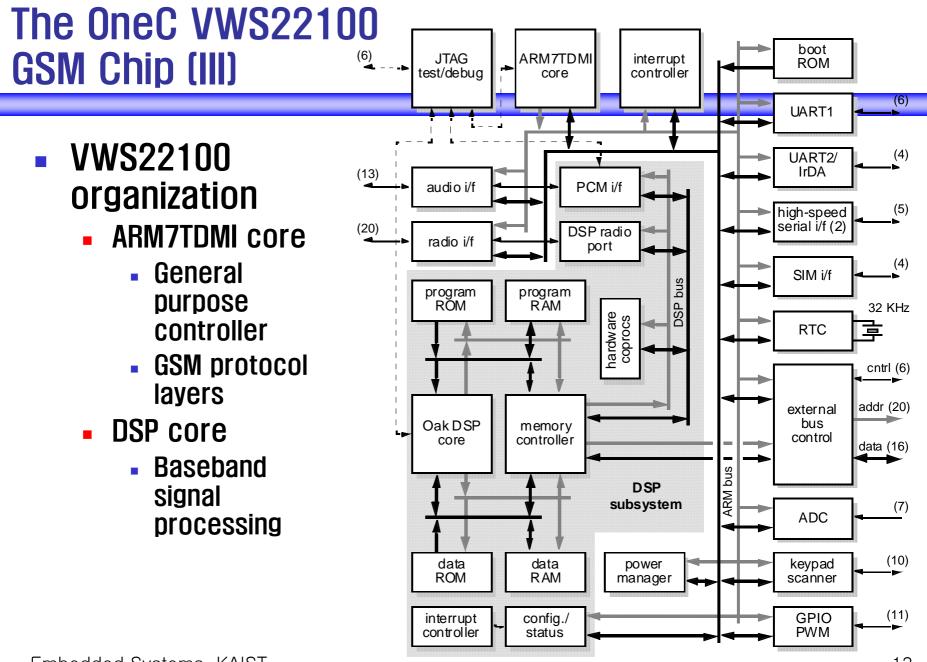
- Based on timing how long it takes to discharge a capacitor to the input voltage level
- Very simple way to measure slowly varying voltages
 - Comparator and counter
- Measure the voltage from a volume control potentiometer or to check the battery voltage in a portable application

Keypad interface

- Parallel output ports to strobe the columns of the keypad
- Parallel input ports with internal pull-down resistors to sense the rows
- Key press will generate an interrupt:
 - ARM can activate individual columns and sense rows.
- Clocks and timers
 - 38.864 MHz and 460.8 KHz during power-down
 - Watchdog at every 1.28 sec
 - 2.5 ms timer interrupts for DRAM refresh and multitasking.

1.9 The OneC VWS22100 GSM Chip


OneC VW22100


- Developed by VLSI Technology, Inc
- System-on-chip design for GSM mobile telephone handset
- All the functions required in a handset with addition of external program and data memory and a suitable radio module
- Example: Samsung SGH2400, a dual-band (GSM 900/1800) handset with hands-free voiceactivated dialing ->

The OneC VWS22100 GSM Chip (II)

Typical GSM handset architecture

The OneC VWS22100 GSM Chip (IV)

DSP subsystem

- Based on the 16-bit Oak DSP core
- Real-time signal processing functions
 - Voice coding
 - Equalization
 - Channel coding
 - Echo cancellation
 - Noise suppression
 - Voice recognition
 - Data compression

ARM7TDMI subsystem

- Responsible for the system control functions
 - The user interface software
 - The GSM protocol stack
 - Power management
 - Driving the peripheral interface
 - Running some data applications

The OneC VWS22100 GSM Chip (V)

On-chip debug

- Single JTAG interface
 - ARM7TDMI EmbeddedICE module
 - Debug technology on the Oak DSP core
 - Other test and debug facilities

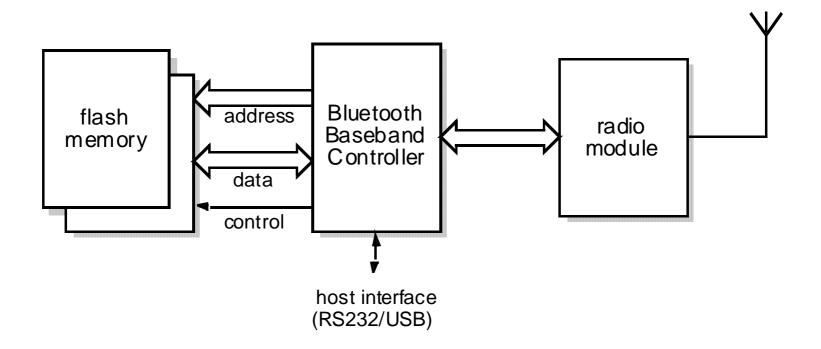
Power management

- Global and selective power-down modes
- The ability to slow down the system clock in idle mode
- The analog circuits also can operate at reduced power
- The on-chip pulse-width modulation outputs control battery charging
- The on-chip ADCs provide for the monitoring of the temperature and battery voltage to give optimum operation.

1.10 The Ericsson–VLSI Bluetooth Baseband Controller

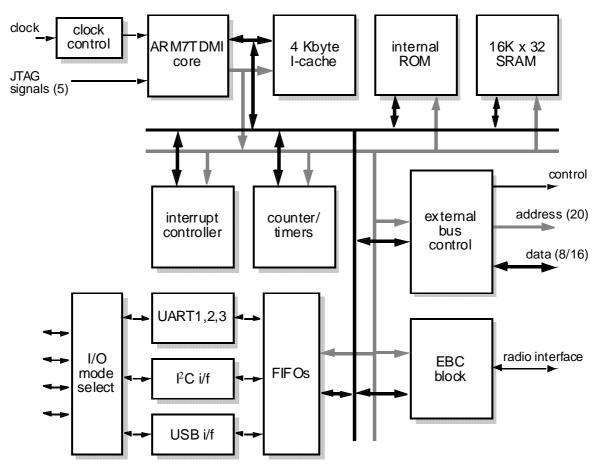
Bluetooth

- De-facto standard for wireless data communication for the 2.4 GHz band
- Consortium of Ericsson, IBM, Intel, Nokia, and Toshiba
- Support short-range communication (to 10 m range) using radio communication with 1 Mbit/s
- Robust communication in a noisy and uncoordinated environment
 - Frequency hopping scheme and forward error correction
- For laptop, cellular telephone, printer, PDA, desktop, fax, keyboards, and so on
- Provide bridge to existing networks


Bluetooth 'piconet'

- Bluetooth units dynamically form ad hoc 'piconets', which are groups of 2 to 8 units that operate the same frequency-hopping scheme
- One of the units will operate as master: Defines the clock and hopping sequence.

The Ericcson–VLSI Bluetooth Baseband Controller (II)


Bluetooth system

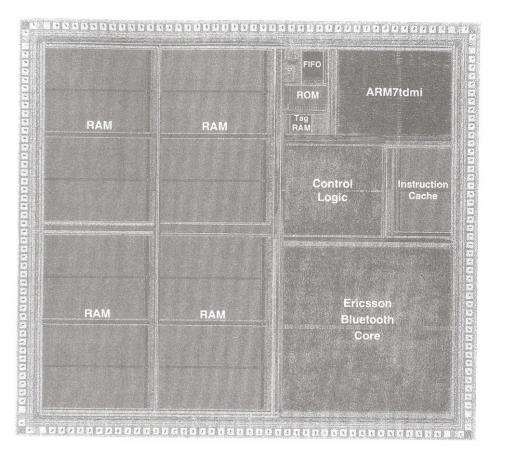
A typical Bluetooth system

The Ericcson–VLSI Bluetooth Baseband Controller (III)

Bluetooth controller organization

The Ericcson–VLSI Bluetooth Baseband Controller (IV)

- Ericsson Bluetooth core
 - Power-optimized hardware block
 - Handles all the Link Controller functionality within the Bluetooth specification
 - Interface logic to a Bluetooth radio communication
 - Performs all the packet-handling functions for point-to-point, multislot, and point-to-multipoint communications
 - Combination of circuit and packet switching


Power management

- 1. On-line: all blocks are clocked at their normal speed. The ARM7TDMI core clock 13 to 40 MHz. 40 mA max.
- 2. Command: The ARM7TDMI clock is slowed down by the insertion of wait states
- 3. Sleep: The ARM7TDMI click is stopped. 0.3 mA.
- 4. Stopped: The clock oscillator is turned off.

The Ericcson–VLSI Bluetooth Baseband Controller (V)

Bluetooth silicon

- Photograph of a Bluetooth die ->
- Bluetooth characteristics
 - Process 0.35 um
 - Transistors 4,300,000
 - MIPS 12
 - Metal layers 3
 - Die area 20 mm²
 - Power 75 mW
 - Vdd 2.5 V
 - Clock 0–13 MHz
 - MIPS/W 160

1.11 The ARM7500 and ARM7500FE

Features

- Highly integrated single-chip computer
- Combines the major components of the Acorn Risc PC
- Principal macrocells
 - The ARM CPU core
 - The FPA10 floating-point coprocessor (ARM7500FE)
 - The video and sound macrocell
 - The memory and I/O controller

The ARM7500 and ARM7500FE (II)

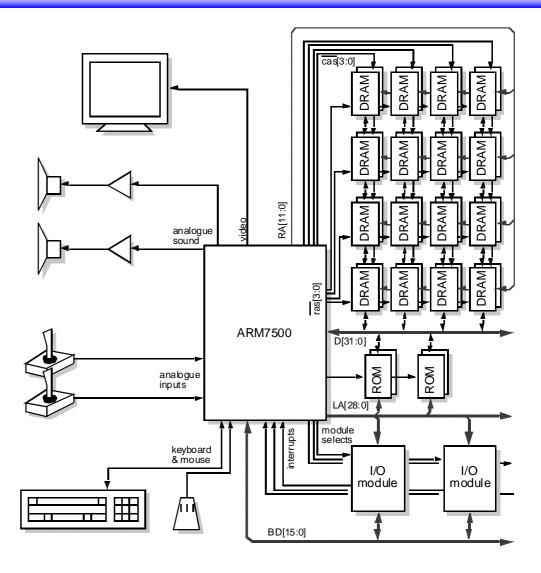
• The ARM CPU core

- Contains most of the functionality of the ARM710
 - ARM7TDMI without Thumb and embedded debug support
- Reduced cache 4 Kbytes (from 8 Kbytes)
 - 4-way set-associative mixed instruction and data cache
- Memory management unit
 - Based on a 2-level page table
 - 64-entry translation look-aside buffer
- A write buffer

The FPA10 floating-point unit

Up to 6 MFLOPS at 40 MHz

The ARM7500 and ARM7500FE (III)

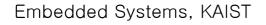

- The video and sound macrocell
 - Video controller
 - Generate displays using a pixel clock of up to 120 MHz
 - 256-entry color palette with on-chip 8-bit DACs for RGB
 - Additional control bits for external mixing and fading
 - Support a separate hardware cursor
 - Can drive a high-resolution color monitor or single- or double-panel grey-scale or color LCD
 - Sound controller
 - 8 independent channels of 8-bit analog stereo sound
 - Played through an on-chip exponential DAC
 - 16-bit sound samples through a serial digital channel and an external CD-quality DAC
 - **DMA** controller for video/audio data channels

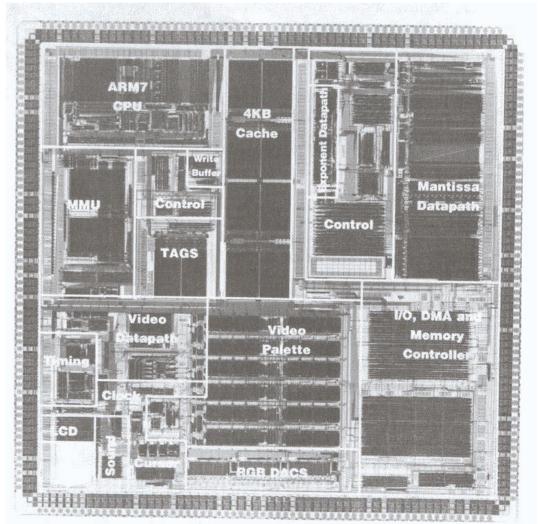
The ARM7500 and ARM7500FE (IV)

- The memory and I/O controller
 - Memory controller
 - Direct connection of up to four banks of DRAM and two banks of ROM
 - Programmed to be 16 or 32 bits wide
 - Double access for 32-bit quantities in 16-bit banks
 - DRAM controller
 - Page mode accesses for sequential cycles in bursts of up to 256 transfers
 - Supports a range of DRAM refresh modes
 - ROM controller
 - Supports burst mode
 - 3 DMA controller
 - Handle data streams for video, cursor, and audio channels
 - I/O controller
 - Manages 16-bit off-chip I/O bus
 - Number of on-chip interfaces: 4 comparators, 2 serial ports, counter/timers, 8 general-purpose open-drain I/O lines, and programmable interrupt controller.

The ARM7500 and ARM7500FE (V)

 Typical ARM7500 system diagram


The ARM7500 and ARM7500FE (VI)

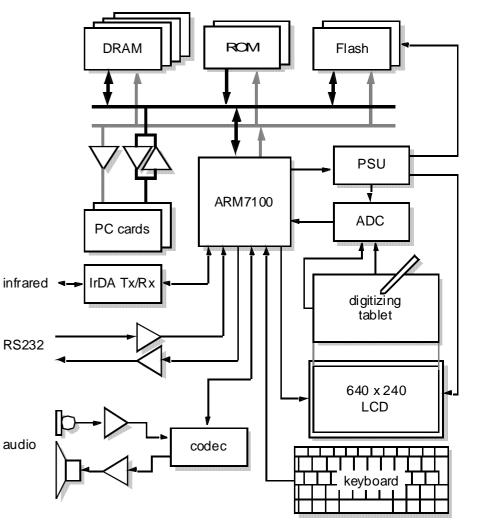

Applications

- Low-cost versions of the Acorn Risc PC
- Online Media interactive video set-top box
 - Restricting the video data stream to normal DRAM
- High-resolution displays
 - 1280 x 1024 and above the number of colors become restricted due to the bandwidth limitations of standard DRAM
- Ideally suited
 - LCD at VGA (640 x 480)
 - TV quality display
- Hand-held test equipment
- Multimedia applications.

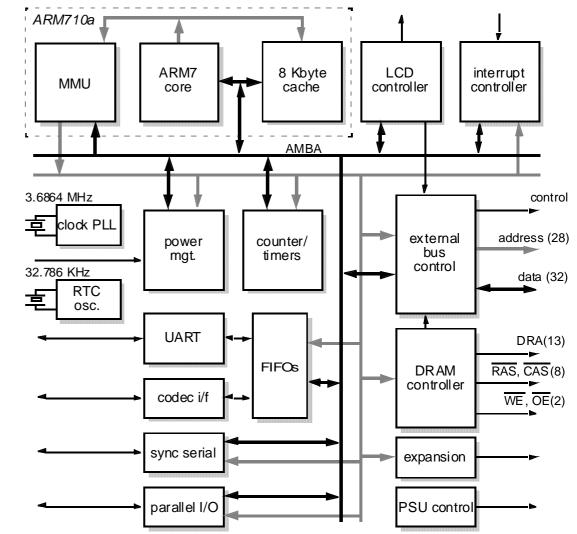
The ARM7500 and ARM7500FE (VII)

- ARM7500 silicon ->
 - 5% ARM core area
- ARM7500 characteristics
 - Process 0.6 um
 - Transistors 550,000
 - MIPS 30
 - Metal layers 2
 - Die area 70 mm²
 - Power 690 mW
 - Vdd 5 V
 - Clock 0–33 MHz
 - MIPS/W 43

1.12 The ARM7100


Features

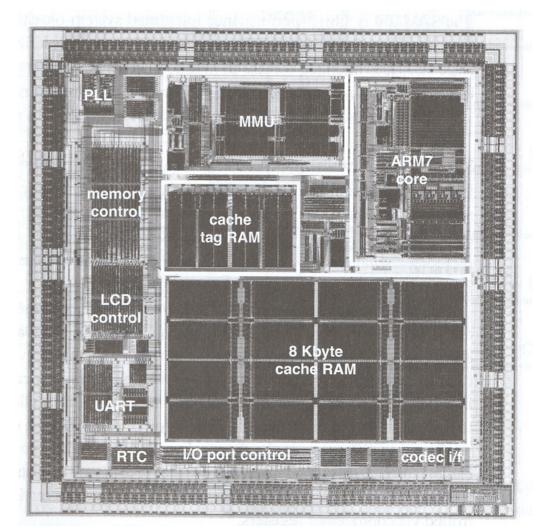
- Highly integrated microcontroller
- Suited to a range of mobile applications
 - Smart mobile phones and palm-top computers
 - Psion Series 5MX ->


The ARM7100 (II)

- The Psion Series 5 hardware organization
 - Principal user input devices
 - Keyboard: parallel I/O
 - Stylus pointing device: transparent digitizing tablet overlaid on the LCD display
 - Infrared via ADC
 - Communication
 - RS232C serial interface
 - IrDA compliant infrared interface for wireless connection to printers, modems, and host PCs
 - Audio codec: microphone and speaker

The ARM7100 (III)

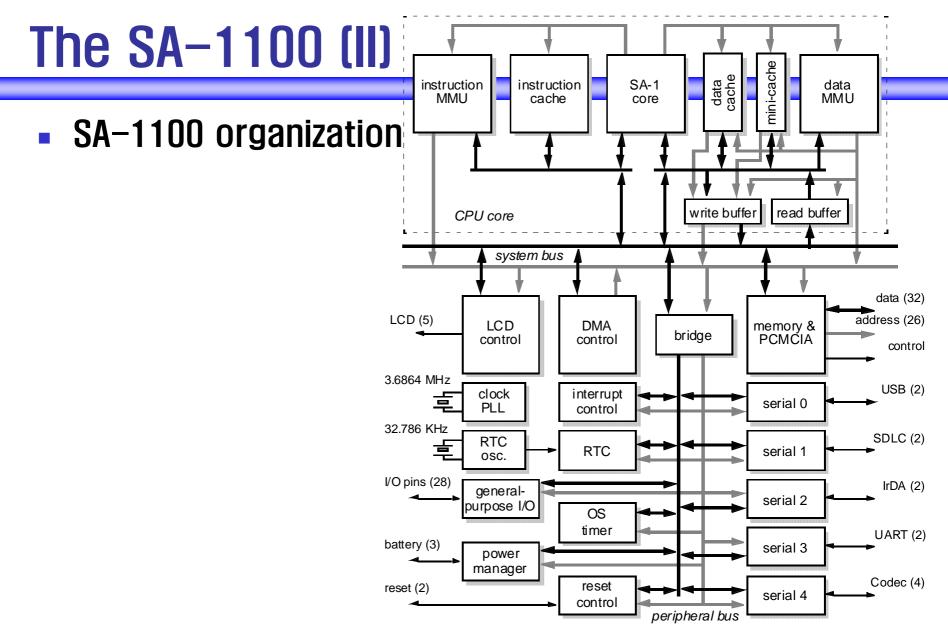
- ARM7100 organization
 - ARM710a CPU
 - ARM MMU
 - 8 Kbyte 4-way associative quadword line cache
 - 4-address 8-data word write buffer
 - AMBA bus
 - Peripherals
 - LCD controller
 - Serial & parallel I/O ports
 - Interrupt controller
 - 32-bit external bus interface
 - DRAM controller


The ARM7100 (IV)

Power management

- Intended for use in battery-powered equipment
 - High performance in response to user input
 - Operate at very low power consumption levels
- Levels
 - Full operation mode: 14 MIPS, 24 mA at 3 V
 - Idle mode: CPU stopped but other systems running. 33 mW
 - Standby mode: 32 KHz running. 33 uW
- Other features to enhance power-efficiency
 - Support for self-refresh DRAM.

The ARM7100 (V)


- ARM7100 silicon ->
- ARM7100 principal characteristics
 - Process 0.6 um
 - Transistor N/A MIPS 30
 - Metal layers 2
 - Die area N/A
 - Power 14 mW
 - Vdd 3.3 V
 - Clock 18.432 MHz
 - MIPS/W 212

1.13 The SA-1100

Features

- High-performance integrated system-on-chip
- Based on a modified version of SA-110 StrongARM CPU core
- Intended for use in mobile phone handsets, modems, and other handheld applications
- High performance with minimal power consumption.

The SA-1100 (III)

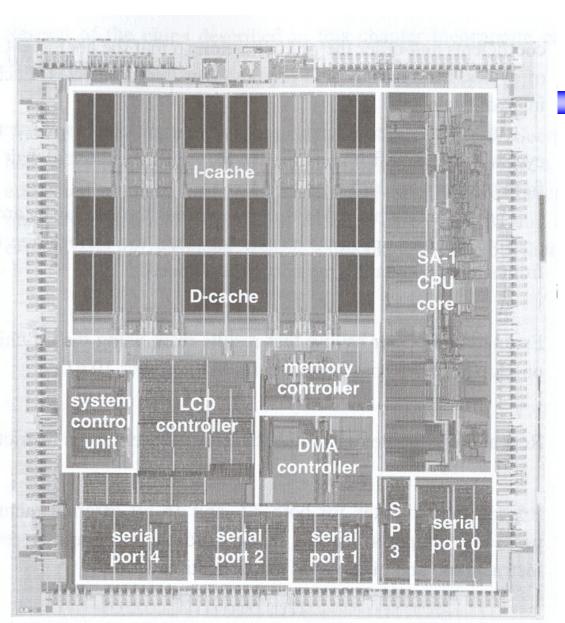
CPU core

- SA-1 processor core
- Exception vector relocation mechanism (for Windows CE)
- 16 Kbyte instruction cache using a 32-way associative CAM-RAM structure with 8-word lines
- MMU with ProcessID mechanism (for Windows CE)
- 8 Kbyte 32-way associative data cache in parallel with a 512 byte 2-way set-associative cache
 - Allow large data structures to be cached without causing major pollution of the main data cache
- Addition of read buffer
 - Pre-load data before the processor requests
- Addition of hardware breakpoint and watchpoint registers.

The SA-1100 (IV)

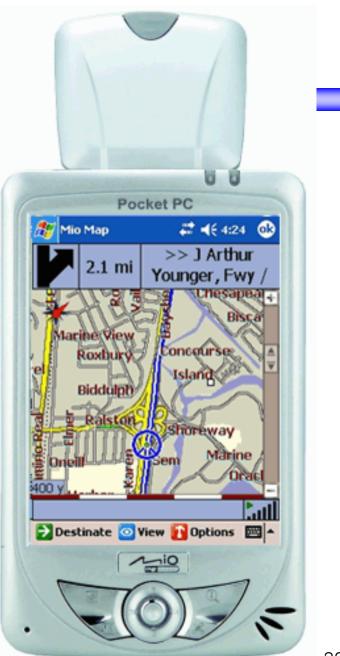
- Memory controller
 - Up to 4 banks of 32-bit off-chip DRAM
 - Conventional or 'extended data out (EDO)' variety
 - ROM, flash, and SRAM are also supported
 - PCMCIA interface
 - Two card slots are supported with some external 'glue' logic

System control


- On-chip
 - A reset controller
 - A power management controller that handles low-battery warnings and switches the system between its various operating modes
 - An operating system timer block that supports general timing and watchdog functions
 - An interrupt controller
 - A real-time clock that runs from a 32 KHz crystal source
 - 28 general-purpose I/O pins.

The SA-1100 (V)

- Peripherals
 - LCD controleir
 - Serial ports: USB, SDLC, IrDA, codec, and standard UART
 - 6-channel DMA
- Bus structure
 - Two buses connected through a bridge
 - The system bus: connects all the bus masters and the off-chip memory
 - The peripheral bus: connects all the slave peripheral devices
 - Similar to AMBA ASB-APB split
 - Minimizes the bus width
 - Reduces the complexity and cost
- Applications
 - Off-chip memory: DRAM and ROM/flash
 - Necessary interface electronics for the various peripheral interfaces, display, and so on
 - Very simple at the PCB level, yet very powerful processing capability and sophisticated system architecture.


The SA-1100 (VI

- SA-1100 silicon ->
- Characteristics
 - Process 0.35 um
 - Transistors 2,500,000
 - MIPS 220/250
 - Metal layers 3
 - Die area 75 mm²
 - Power 330/550 mW
 - Vdd 1.5/2V
 - Clock 180/220 MHz
 - MIPS/W 665/450

1.14 Mio 168

- Pocket PC with Integrated GPS
 - Runs on Windows Mobile 2003 for Pocket PC
 - Utilizes an Intel XScale processor
 - A 16-bit TFT LCD display with LED backlighting offers up to 65,536 colors
- Bundled with a complete navigation software package
 - Routing: Easy-to-follow turnby-turn visual and voice prompts guide you to your destination
 - Plan trips and optimize routes with multi-point routing feature
 - Automatic route recalculation suggests an alternate route if you take a wrong turn.

Function		Specification
CPU		Intel® Xscale 300 MHz
Operating System		Windiws Mobile [™] software for Pocket PCs
Display		3.5 color Transflective LCD, LED Backlighting, 240 x 320, 65K colors
Memory		32MB Flash ROM. 64MB SDRAM
Audio		Voice Recording(Mono). MP3 Playback support. Media Player
1/0	Input Method	Stylus pen/Software kdyboard/Handwriting Recognition
	Expansion Slot	SD/MMC. SD IO
	Microphone	Builit-in type x 1(Mono)
	Speaker	Builit-in Monaural type speaker x 1
	Headphone	2.5mm Mini jack x 1
	USB	USB 1.1 Client for ActiveSync
	Infrared	IrDA (SIR). Consumer IR (4 meters)
	battery	Embedded Lithium Ion Battery 1350mAh Active: 12 hours(fully charged main battery, w/o GPS) Suspend: 21 days(fully charged main battery)
Dimension		112.8 mm (H) x 69.6 mm (W) x 16.3~24.15mm (D)
Weight		147g
Power Supply		Input 100~240VAC; Output 5VDC, 1A DC