Embedded Systems Ch 3A Linux Development Environment

Byung Kook Kim Dept of EECS Korea Advanced Institute of Science and Technology

Overview

- 1. Embedded Linux
- 2. Cross-Development System
- 3. Setting Linux Development Environment
- 4. 개발 시스템 환경 구축
- 5. Linux Basics

1. Embedded Linux

- Software for embedded target
 - Simple systems (Ex. Automatic electric power meter)
 - Application software, modem communication software
 - More complex systems (Ex. PDA)
 - Application/service software
 - 개인정보관리, game, 전자상거래, 원격가전제어, 무선전화, Web surfing, chatting, etc.
 - Hardware dependent platform driving software
 - Software driving internal and external hardware
 - Device driver for LCD, keypad, touch panel, network, etc.
 - Network software
 - xDSL, cable modem, Ethernet, Bluetooth, Wifi, CDMA, etc.
 - Fundamental software
 - Operating system, DBMS, GUI, MMI, Web server

Embedded Linux (II)

- Operating system for embedded systems
 - Why OS?
 - Complex programs and diverse services (network and devices)
 - Fast development time and expandability
 - OS: 컴퓨터에 연결된 hardware alc software 자원을 효율적으로 관리 하는 프로그램.
 - ~60% of embedded systems utilize OS.
 - Constraints
 - Should fit within system's memory
 - RAM: data
 - ROM or flash: program
 - Operating systems
 - Wind River Systems: VxWorks, Tornado
 - Palm computing: Palm OS
 - Microsoft: Windows CE
 - -: Embedded Linux Next OS to be applied (49%)

Embedded Linux (III)

- Linux originated by Linus Torvalds
 - Vast application software
 - Stability of kernels
 - Success in servers and workstations using PC
- Advantages of Linux
 - Compatible with Unix
 - Open source, free
 - Stable (than Windows)
 - Improved hardware utilization
 - Powerful networking and Internet support
 - Vast application programs
 - Multi-user, multi-tasking
 - Supports POSIX (Portable Operating System Interface for Computer Environment).

Embedded Linux (IV)

- Disadvantages of Linux
 - Standardization
 - Software reliability
 - Much development effort
- Embedded Linux
 - Scaled-down Linux for embedded processors to fit into ROM or flash.
 - 낮은 성능의 프로세서와 적은 크기의 메모리를 가진 내장형 시스템용으로 개발된 리눅스.
 - With or without memory management software (or virtual memory)
 - Ported processors
 - 32bit: Intel x86, Motorola Power PC, ARM9, MIPS, etc.
 - 64-bit: IA-64
 - W/O MMU: ARM7, Motorola 68K, Intel i960, AXIS, etc.

2. Cross-Development System

Embedded system software

- Embedded system을 개발하는데 필요한 모든 software
 - User: Software running on the embedded system
 - Developer: Software for cross development environment

Software development tools

- Editor: Edit source files
- Compiler: Translates into object files
- Linker: Links object files and libraries
- Debugger: Step-by-step execution and status check

Cross-Development System (II)

- Stand-alone system
 - PC and Workstation
 - Self-contained for general purposes
 - Hardware: CPU. Memory, general-purpose user interface, Disk,
 - Software: Operating system, application program, editor, compiler, linker
 - Native compiler
 - PC에서 동작 되는 프로그램은 PC상에서 동작되는 컴파일러를 이용하여 개발 하고, 동일한 시스템내에서 프로그램의 수행이 가능하다
- Embedded system
 - Self-contained for a specific purpose
 - Limited hardware: CPU, memory, specific I/O, Flash or ROM
 - Software: Embedded OS, application program
 - Cross compiler
 - 개발 호스트를 구축하여 개발 호스트에서 컴파일하여 작성된 프로그램을 장비 에 다운로드라는 작업을 통하여 실행 프로그램을 써 넣고 이를 수행하게 된다.

Cross-Development System (III)

- Development stages for embedded system
 - In the host
 - Hardware에 독립적인 software 설계 및 개발
 - Host**OIIX** compile, run, and debug
 - Embedded processor에서 실행 가능한 code로 cross compile
 - Download the executable code to the embedded target
 - In the target (with the host)
 - Run and debug using debugging tools
 - Transfer the verified program to ROM or flash in the embedded target.

3. Setting Linux Development Environment

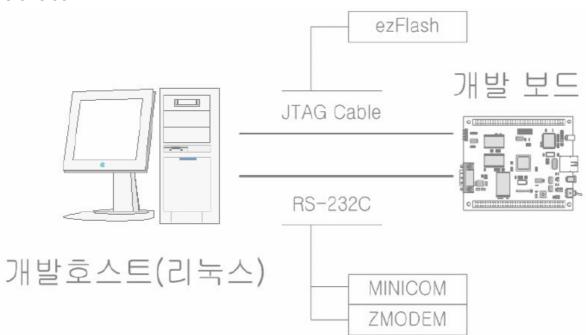
Partitioning Disk

- Tools
 - Windows 98, ME: fips, fdisk
 - Windows 2000, XP: Partition Magic (Commercial software)
- Partition
 - Windows requires at least one disk partition (C:)
 - Add one more partition for user space (D:)
 - Linux requires at least two disk partitions (/ and swap)
 - Add one more partition for user space (/home)
 - Solution
 - Primary partition: C: for Windows
 - Secondary partition: Up to 4 logical partitions
 - 1st partition: D: for windows
 - 2nd partition: / for Linux (1 GB or more)
 - 3rd partition: Swap for Linux (2x memory size)
 - 4th partition: /home for Linux (2 GB or more).

Setting Linux Development Environment (II)

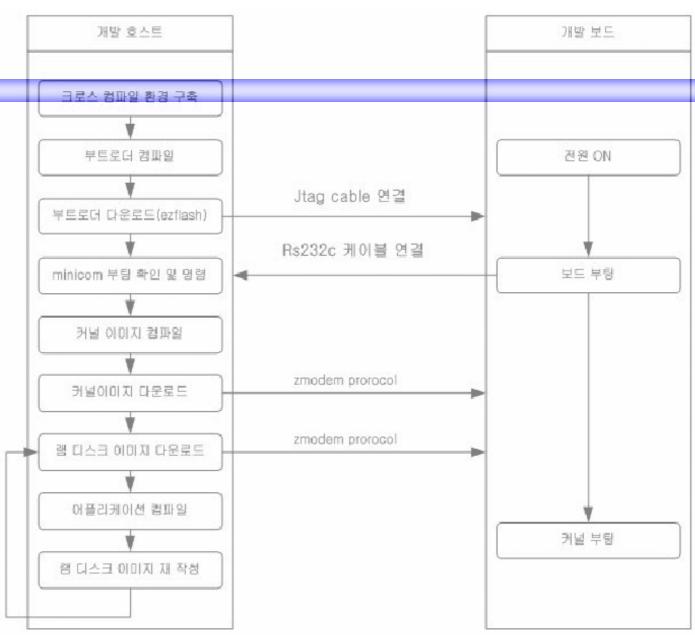
Installing Linux

- Suggested Linux: Redhat Linux 9.0
 - http://www.redhat.com
- Installation menu
 - Install mode: Test, graphic, expert, rescue
 - Installation type: Workstation, server, Laptop, Custom
 - Drive partition: Disk druid, fdisk
 - Boot loader: LILO boot loader (Linux Loader)
 - Selectable boot for Windows or Linux
 - Network addresses
 - IP address, Netmask, network, broadcast, hostname, gateway, primary DNS, secondary DNS, tertiary DNS
 - Time zone: Seoul
 - Root and user ids and passwords
 - Selection of packages
 - Selection of video cards
 - Boot diskette
 - X windows setting

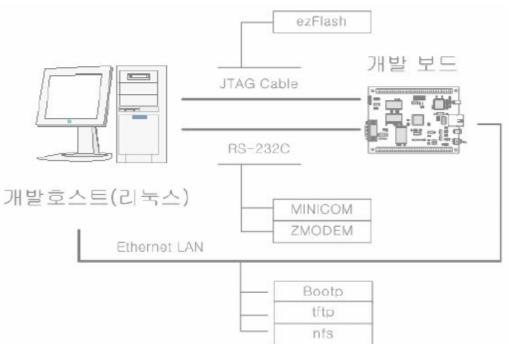

Setting Linux Development Environment (III)

- Install new kernel (if necessary)
 - Select modules for I/O devices
 - # make menuconfig
 - # make xconfig
- Install cross development software
 - Assembler
 - Compiler
 - Linker
- Set network environments
 - Nfs (Network File System)
 - Tftp (Tiny File Transfer Protocol)

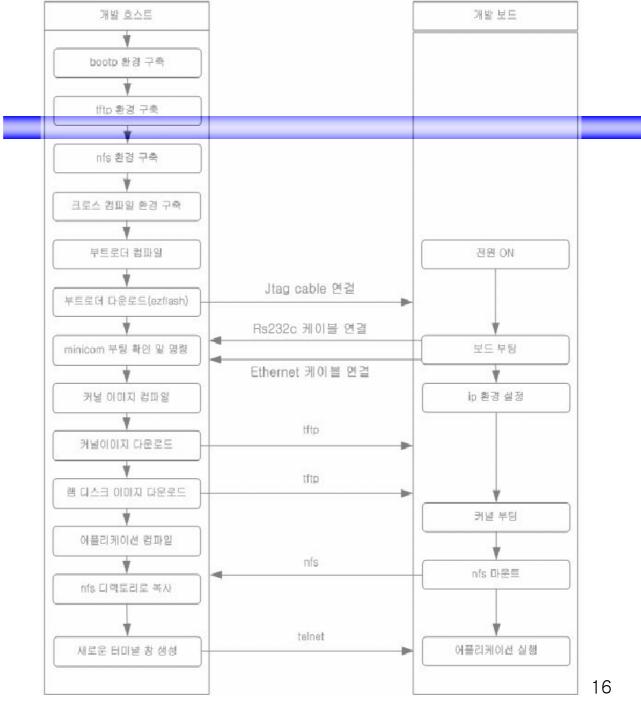
4. 개발시스템 환경 구축


■ 1. 최소 개발 시스템

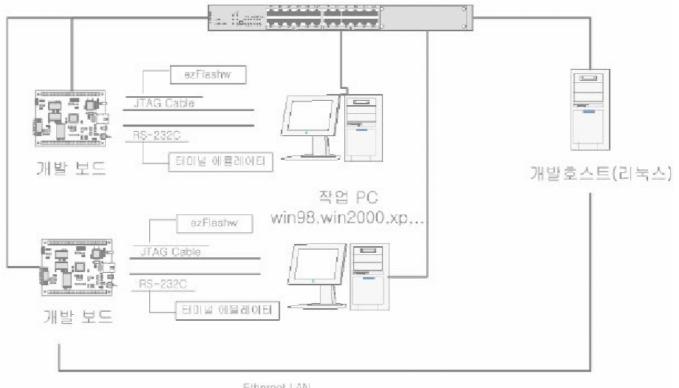
- BOOT image load: JTAG with EzFlash
 - Very slow
- Kernel and Ramdisk load: Serial with zmodem
 - Moderate


개발시스 템 환경 구축 (II)

 Development flow


개발시스템 환경 구축 (III)

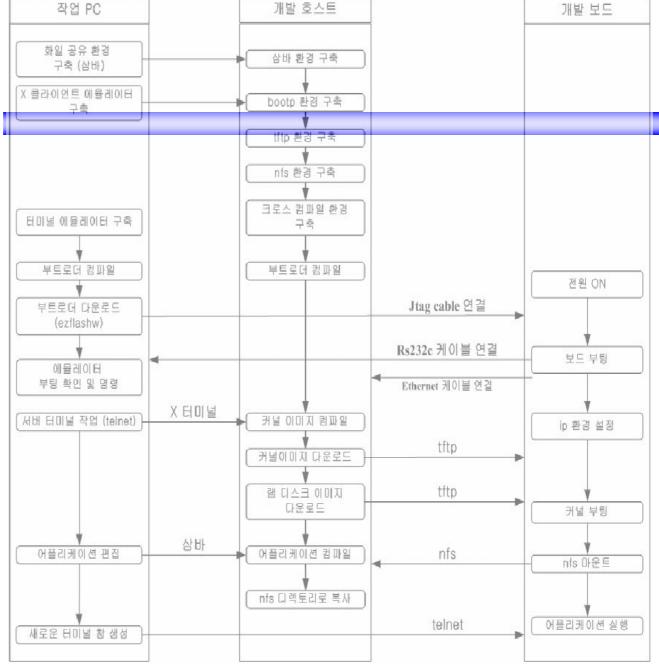
- 2. 일반적 개발 시스템
 - Bootp 및 tftp를 이용한 application program download
 - Bootp: 개발 board의 IP 획득
 - Tftp: Tiny file transfer protocol
 - Nfs: Network File System
 - Embedded system을 위한 file system


개발시스 템 환경 구축 (IV)

Development flow

개발시스템 환경 구축 (V)

3. 대규모 개발 시스템



Ethernet LAN

	Bootp
_	tftp
	nfs

개발시스 템 환경 구축 (VI)

Development flow

5. Linux Basics

Getting Started

- # login: username or root
- # password: user_password or root_password
- # logout
- # shutdown –h now ; Shutdown the computer
- Basic commands
 - # date

- ; Display date and time
- Wed Sep 1 12:12:29 EDT 2004
- # who
- # man command
- # pwd
- # cd /usr/src/linux

- ; List users currently logged in
- ; Display manual of the command
- ; Print the complete pathname of the current directory
- ; Change directory to /usr/src/linux

Linux Basics (II)

File manipulation

- # Is [-la] ; List files in the current directory
- # cat filename; Prints the file with filename
- # cp source_file dest_file ; Copy source_file to dest_file
 - # cp file /dev/ttyS0
- # rm junk_file ; Remove junk_file
- ; Copy file to COM1
- # mv old_file to new_file ; Rename the old_file to new_file

Manipulating directories

- # mkdir new_dir
- # rmdir old_dir
- # mv old_dir new_dir
- # cd new_dir
 - # cd ..
 - # cd /

- ; Make a new_dir directory
- ; Delete the old_dir directory
- ; Rename old_dir directory to new_dir
- ; Change directory to new_dir
- ; Change to upper directory
- ; Chenage to root directory

Linux Basics (III)

System inquiries

- # ps
- # kill -9 process_id
- # du
- # df
- # su

- ; List active processes with process_id
- ; Kill the process with process_id
- ; Disk usage of the current directory
- ; Display file system usage
- ; Become the superuser (root)
- # password: root_password
- # exit

; Become a normal user

Linux Basics (IV)

Editing files with vi

- # vi file.c
- # Ctrl-F, Ctrl-B

- ; Visual edit file.c : Move forward/backward a full screen
- # space, backspace, return ; Move cursor right/left/next_line
- # i... esc
- # a... esc
- # 0... esc
- # 0... esc
- # X
- # dw
- # dd
- # r file
- # s/old/new/g
- # :q
- # :wq

- ; Insert characters before cursor (until escape); Insert characters after cursor (until escape)
- ; Insert line by line after the current line
- ; Insert line by line before the current line
- ; Delete the current character
- ; Delete the current word
- ; Delete the current line
- ; Read the file
- ; Substitute old to new globally
- ; Quit without saving
- ; Quit after saving

Linux Basics (V)

Compile and run

- # mkdir /embedded/test
- # cd /embedded/test
- # vi hello.c
- # gcc –o hello hello.c
 - ; Cross-compile and link the program to produce hello.
- # ./hello
- ; Run hello
- Hello, Embedded board!
 - ; Output: print a string on the console

{

}

#include <stdio.h> void main()

printf("Hello, Embedded system!₩n");

Linux Basics (VI)

Make command

vi Makefile

main.o average.o: defs.h

average: main.o average.o

gcc –o average main.o average.o –Im

- # vi defs.h
- # vi main.c
- # vi average.c
- # make average.o
- # make average

- ; Compile average.c to average.o
- ; Compile main.c to main.o Link main.o, average.o, and lib into average

./average

; Run average