
Embedded Systems

Ch 3A
Linux Development

Environment

Byung Kook Kim
Dept of EECS

Korea Advanced Institute of Science and Technology

Overview

Embedded Systems, KAIST 2

1. Embedded Linux

2. Cross-Development System

3. Setting Linux Development Environment

4. 개발 시스템 환경 구축

5. Linux Basics

1. Embedded Linux

Embedded Systems, KAIST 3

Software for embedded target
Simple systems (Ex. Automatic electric power meter)

Application software, modem communication software

More complex systems (Ex. PDA)
Application/service software

개인정보관리, game, 전자상거래, 원격가전제어, 무선전화, Web surfing,
chatting, etc.

Hardware dependent platform driving software
Software driving internal and external hardware
Device driver for LCD, keypad, touch panel, network, etc.

Network software
xDSL, cable modem, Ethernet, Bluetooth, Wifi, CDMA, etc.

Fundamental software
Operating system, DBMS, GUI, MMI, Web server

Embedded Linux (II)

Embedded Systems, KAIST 4

Operating system for embedded systems
Why OS?

Complex programs and diverse services (network and devices)
Fast development time and expandability
OS: 컴퓨터에 연결된 hardware alc software 자원을 효울적으로 관리
하는 프로그램.
~60% of embedded systems utilize OS.

Constraints
Should fit within system’s memory

RAM: data
ROM or flash: program

Operating systems
Wind River Systems: VxWorks, Tornado
Palm computing: Palm OS
Microsoft: Windows CE
-: Embedded Linux - Next OS to be applied (49%)

Embedded Linux (III)

Embedded Systems, KAIST 5

Linux originated by Linus Torvalds
Vast application software
Stability of kernels
Success in servers and workstations using PC

Advantages of Linux
Compatible with Unix
Open source, free
Stable (than Windows)
Improved hardware utilization
Powerful networking and Internet support
Vast application programs
Multi-user, multi-tasking
Supports POSIX (Portable Operating System Interface for
Computer Environment).

Embedded Linux (IV)

Embedded Systems, KAIST 6

Disadvantages of Linux
Standardization
Software reliability
Much development effort

Embedded Linux
Scaled-down Linux for embedded processors to fit into ROM or
flash.
낮은 성능의 프로세서와 적은 크기의 메모리를 가진 내장형 시스템용으
로 개발된 리눅스.

With or without memory management software (or virtual memory)
Ported processors

32bit: Intel x86, Motorola Power PC, ARM9, MIPS, etc.
64-bit: IA-64
W/O MMU: ARM7, Motorola 68K, Intel i960, AXIS, etc.

2. Cross-Development System

Embedded Systems, KAIST 7

Embedded system software
Embedded system을 개발하는데 필요한 모든 software

User: Software running on the embedded system
Developer: Software for cross development environment

Software development tools
Editor: Edit source files
Compiler: Translates into object files
Linker: Links object files and libraries
Debugger: Step-by-step execution and status check

Cross-Development System (II)

Embedded Systems, KAIST 8

Stand-alone system
PC and Workstation
Self-contained for general purposes

Hardware: CPU. Memory, general-purpose user interface, Disk,
Software: Operating system, application program, editor, compiler, linker

Native compiler
PC에서 동작 되는 프로그램은 PC상에서 동작되는 컴파일러를 이용하여 개발
하고, 동일한 시스템내에서 프로그램의 수행이 가능하다

Embedded system
Self-contained for a specific purpose

Limited hardware: CPU, memory, specific I/O, Flash or ROM
Software: Embedded OS, application program

Cross compiler
개발 호스트를 구축하여 개발 호스트에서 컴파일하여 작성된 프로그램을 장비
에 다운로드라는 작업을 통하여 실행 프로그램을 써 넣고 이를 수행하게 된다.

Cross-Development System (III)

Embedded Systems, KAIST 9

Development stages for embedded system
In the host

Hardware에 독립적인 software 설계 및 개발

Host에서 compile, run, and debug

Embedded processor에서 실행 가능한 code로 cross compile

Download the executable code to the embedded target

In the target (with the host)
Run and debug using debugging tools

Transfer the verified program to ROM or flash in the
embedded target.

Embedded Systems, KAIST 10

3. Setting Linux
Development Environment

Partitioning Disk
Tools

Windows 98, ME: fips, fdisk
Windows 2000, XP: Partition Magic (Commercial software)

Partition
Windows requires at least one disk partition (C:)

Add one more partition for user space (D:)
Linux requires at least two disk partitions (/ and swap)

Add one more partition for user space (/home)
Solution

Primary partition: C: for Windows
Secondary partition: Up to 4 logical partitions

1st partition: D: for windows
2nd partition: / for Linux (1 GB or more)
3rd partition: Swap for Linux (2x memory size)
4th partition: /home for Linux (2 GB or more).

Setting Linux Development
Environment (II)

Embedded Systems, KAIST 11

Installing Linux
Suggested Linux: Redhat Linux 9.0

http://www.redhat.com
Installation menu

Install mode: Test, graphic, expert, rescue
Installation type: Workstation, server, Laptop, Custom
Drive partition: Disk druid, fdisk
Boot loader: LILO boot loader (Linux Loader)

Selectable boot for Windows or Linux
Network addresses

IP address, Netmask, network, broadcast, hostname, gateway, primary
DNS, secondary DNS, tertiary DNS

Time zone: Seoul
Root and user ids and passwords
Selection of packages
Selection of video cards
Boot diskette
X windows setting

http://www.redhat.com/

Setting Linux Development
Environment (III)

Embedded Systems, KAIST 12

Install new kernel (if necessary)
Select modules for I/O devices

make menuconfig
make xconfig

Install cross development software
Assembler
Compiler
Linker

Set network environments
Nfs (Network File System)
Tftp (Tiny File Transfer Protocol)

4. 개발시스템 환경 구축

Embedded Systems, KAIST 13

1. 최소 개발 시스템
BOOT image load: JTAG with EzFlash

Very slow

Kernel and Ramdisk load: Serial with zmodem
Moderate

Embedded Systems, KAIST 14

개발시스
템 환경
구축 (II)

Development
flow

개발시스템 환경 구축 (III)

Embedded Systems, KAIST 15

2. 일반적 개발 시스템
Bootp 및 tftp를 이용한 application program download

Bootp: 개발 board의 IP 획득

Tftp: Tiny file transfer protocol
Nfs: Network File System

Embedded system을 위한 file system

Embedded Systems, KAIST 16

개발시스

템 환경

구축 (IV)

Development flow

개발시스템 환경 구축 (V)

Embedded Systems, KAIST 17

3. 대규모 개발 시스템

Embedded Systems, KAIST 18

개발시스

템 환경

구축 (VI)

Development flow

5. Linux Basics

Embedded Systems, KAIST 19

Getting Started
login: username or root
password: user_password or root_password
logout
shutdown –h now ; Shutdown the computer

Basic commands
date ; Display date and time

Wed Sep 1 12:12:29 EDT 2004
who ; List users currently logged in
man command ; Display manual of the command
pwd ; Print the complete pathname of the

current directory
cd /usr/src/linux ; Change directory to /usr/src/linux

Linux Basics (II)

Embedded Systems, KAIST 20

File manipulation
ls [-la] ; List files in the current directory
cat filename ; Prints the file with filename
cp source_file dest_file ; Copy source_file to dest_file

cp file /dev/ttyS0 ; Copy file to COM1
rm junk_file ; Remove junk_file
mv old_file to new_file ; Rename the old_file to new_file

Manipulating directories
mkdir new_dir ; Make a new_dir directory
rmdir old_dir ; Delete the old_dir directory
mv old_dir new_dir ; Rename old_dir directory to new_dir
cd new_dir ; Change directory to new_dir

cd .. ; Change to upper directory
cd / ; Chenage to root directory

Linux Basics (III)

Embedded Systems, KAIST 21

System inquiries
ps ; List active processes with process_id
kill -9 process_id ; Kill the process with process_id
du ; Disk usage of the current directory
df ; Display file system usage
su ; Become the superuser (root)

password: root_password
exit ; Become a normal user

Linux Basics (IV)

Embedded Systems, KAIST 22

Editing files with vi
vi file.c ; Visual edit file.c
Ctrl-F, Ctrl-B : Move forward/backward a full screen
space, backspace, return ; Move cursor right/left/next_line
i… esc ; Insert characters before cursor (until escape)
a… esc ; Insert characters after cursor (until escape)
o… esc ; Insert line by line after the current line
O… esc ; Insert line by line before the current line
x ; Delete the current character
dw ; Delete the current word
dd ; Delete the current line
r file ; Read the file
s/old/new/g ; Substitute old to new globally
:q ; Quit without saving
:wq ; Quit after saving

Linux Basics (V)

Embedded Systems, KAIST 23

Compile and run
mkdir /embedded/test
cd /embedded/test
vi hello.c
gcc –o hello hello.c

; Cross-compile and link the program to produce hello.
./hello

; Run hello
Hello, Embedded board!

; Output: print a string on the console

#include <stdio.h>
void main()
{

printf("Hello, Embedded system!₩n");

}

Linux Basics (VI)

Embedded Systems, KAIST 24

Make command
vi Makefile

vi defs.h
vi main.c
vi average.c
make average.o ; Compile average.c to average.o
make average ; Compile main.c to main.o

Link main.o, average.o, and lib into average
./average ; Run average

main.o average.o: defs.h

average: main.o average.o

gcc –o average main.o average.o -lm

	Embedded SystemsCh 3ALinux Development Environment
	Overview
	1. Embedded Linux
	Embedded Linux (II)
	Embedded Linux (III)
	Embedded Linux (IV)
	2. Cross-Development System
	Cross-Development System (II)
	Cross-Development System (III)
	3. Setting Linux Development Environment
	Setting Linux Development Environment (II)
	Setting Linux Development Environment (III)
	4. 개발시스템 환경 구축
	개발시스템 환경 구축 (II)
	개발시스템 환경 구축 (III)
	개발시스템 환경 구축 (IV)
	개발시스템 환경 구축 (V)
	개발시스템 환경 구축 (VI)
	5. Linux Basics
	Linux Basics (II)
	Linux Basics (III)
	Linux Basics (IV)
	Linux Basics (V)
	Linux Basics (VI)

