
Embedded Systems

Ch 5B.
Parallel Interface (II)

Byung Kook Kim
Dept of EECS

Korea Advanced Institute of Science and Technology

Overview

Embedded Systems, KAIST 2

1. Introduction to Parallel Ports

2. Input/Output Mechanisms

3. IEEE 1284

4. Centronix Interface
5. GPIO (General Purpose Input/Output) Interface

6. GPIO Driver

7. DIO (Digital Input/Output) Driver

5. GPIO Interface

Embedded Systems, KAIST 3

Block
Diagram
of
PXA255

GPIO Interface (II)

Embedded Systems, KAIST 4

GPIO (General Purpose Input/Output)
Each GPIO pin can be individually programmed as an output or an input.
Inputs can cause interrupts on rising or falling edges.
Primary GPIO pins are not shared with peripherals while secondary GPIO
pins have alternate functions which can be mapped to the peripherals.

GPIO란?
GPIO(General Purpose Input/Output)란 일반적인 용도로 사용 가능한 디

지털 입출력 기능의 Port pins 이다.

PXA255의 GPIO는 총 85개이며 각각이 pin 들은 input/output으로 프로그

램 되거나 인터럽트 source로 사용될 수 있다.

PXA255의 대부분의 GPIO는 단순히 디지털 입출력 뿐만 아니라 부가적인

기능을 갖고 있다. 그래서 다른 기능을 사용하다 보면 처음 생각보다 단순

DIO로 사용할 GPIO가 적어진다.

GPIO Interface (III)

Embedded Systems, KAIST 5

Remarks on GPIO
The PXA255 processor enables and controls its 85 GPIO pins
through the use of 27 registers which configure the pin direction
(input or output), pin function, pin state (outputs only), pin level
detection (inputs only), and selection of alternate functions.

A portion of the GPIOs can be used to bring the processor out of
Sleep mode.

Take care when choosing which GPIO pin is assigned as a GPIO
function because many of the GPIO pins have alternate functions
and can be configured to support processor peripherals.

Configure all unused GPIOs as outputs to minimize power
consumption.

GPIO Interface (IV)

Embedded Systems, KAIST 6

GPIO Operation
The PXA255 processor provides 85 GPIO pins for use in
generating and capturing application-specific input and output
signals.
Each pin can be programmed as either an input or output.
When programmed to be an input, a GPIO can also serve as an
interrupt source.
All 85 pins are configured as inputs during the assertion of all
resets, and remain as inputs until they are configured otherwise.

GPIO Interface (V)

Embedded Systems, KAIST 7

GPIO Operation (II)
Use the GPIO Pin Direction Register (GPDR) to set whether the GPIO
pins are outputs or inputs.
When programmed as an output, the pin can be set high by writing to
the GPIO Pin Output Set Register (GPSR) and cleared low by writing to
the GPIO Pin Output Clear Register (GPCR).
The set and clear registers can be written to regardless of whether the
pin is configured as an input or an output.
If a pin is configured as an input, the programmed output state occurs
when the pin is reconfigured to be an output.

Embedded Systems, KAIST 8

GPIO
Interface (VI)

GPIO Operation (III)
Validate each GPIO pin’s state by reading the GPIO Pin Level Register
(GPLR).
You can read this register any time to confirm the state of a pin.
In addition, use the GPIO Rising Edge Detect Enable Register (GRER) and
GPIO Falling Edge Detect Enable Register (GFER) to detect either a rising
edge or falling edge on each GPIO pin.
Use the GPIO Edge Detect Status register (GEDR) to read edge detect state.
These edge detects can be programmed to generate interrupts.
Also use GPIO[15:0] to generate wake-up events that bring the PXA255
processor out of sleep mode.

GPIO Interface (VII)

Embedded Systems, KAIST 9

GPIO Operation (IV)
Most GPIO pins can also serve an alternate function within the
processor.
Certain modes within the serial controllers and LCD controller
require extra pins.
These functions are hardwired into specific GPIO pins.
Even though a GPIO pin is used for an alternate function, you
must still program the proper direction of that pin through the
GPDR.

Embedded Systems, KAIST 10

GPIO Interface
(VIII)

Block diagram of GPIO

GPIO Interface (IX)

Embedded Systems, KAIST 11

GPIO
Alternate
Functions
(Partial)

GPIO Interface (X)

Embedded Systems, KAIST 12

GPIO Register Definitions
Twenty-seven 32-bit registers within the GPIO control block.

Nine distinct register functions
Three sets of each of the nine registers to serve the 85 GPIOs.

Registers
• Three monitor pin state (GPLR)
• Six control output pin state (GPSR, GPCR)
• Three control pin direction (GPDR)
• Six control whether rising edges and/or falling edges are detected

(GRER & GFER)
• Three indicate when specified edge types have been detected on pins

(GEDR).
• Six determine whether a pin is used as a normal GPIO or whether it

is to be taken over by one of three possible alternate functions
(GAFR_L, GAFR_U).

GPIO Interface (XI)

Embedded Systems, KAIST 13

GPIO Register Definitions Table

GPIO Interface (XII)

Embedded Systems, KAIST 14

GPIO Pin-Level Registers (GPLR0, GPLR1, GPLR2)
Check the state of each of the GPIO pins by reading the GPIO Pin Level
register (GPLR).
Each bit in the GPLR corresponds to one pin in the GPIO.

GPLR0[31:0] correspond to GPIO[31:0],
GPLR1[31:0] correspond to GPIO[63:32] and
GPLR2[16:0] correspond to GPIO[84:64].
Use the GPLR0–2 read-only registers to determine the current value of a
particular pin (regardless of the programmed pin direction).
For reserved bits, reads return zero.

GPIO Pin Direction Registers (GPDR0, GPDR1, GPDR2)
The GPDR contain one direction control bit for each of the 85 GPIO pins.
If a direction bit is programmed to a one, the GPIO is an output.
If it is programmed to a zero, it is an input.
Reserved bits must be written to zeros and reads to the reserved bits
must be ignored.

GPIO Interface (XIII)

Embedded Systems, KAIST 15

GPIO Pin Output Set Registers (GPSR0, GPSR1, and GPSR2)
and Pin Output Clear Registers (GPCR0, GPCR1, GPCR2)

When a GPIO is configured as an output, the state of the pin can be
controlled by writing to either the GPSR or GPCR.

An output pin is set high by writing a one to its corresponding bit within the
GPSR.

To clear an output pin, a one is written to the corresponding bit within the
GPCR.

Remarks
GPSR and GPCR are write-only registers: Reads return unpredictable values.

Writing a zero to any of the GPSR or GPCR bits has no effect on the state of
the pin.

Writing a one to a GPSR or GPCR bit corresponding to a pin that is configured
as an input is effective only after the pin is configured as an output.

Reserved bits must be written with zeros and reads must be ignored.

GPIO Interface (XIV)

Embedded Systems, KAIST 16

GPIO Rising Edge Detect Enable Registers (GRER0,
GRER1, GRER2) and Falling Edge Detect Enable
Registers (GFER0, GFER1, GFER2)

Each GPIO can also be programmed to detect a rising-edge,
falling-edge, or either transition on a pin.
When an edge is detected that matches the type of edge
programmed for the pin, a status bit is set.
The interrupt controller can be programmed so that an interrupt
is signalled to the core when any of these status bits are set.
Additionally, the interrupt controller can be programmed so that a
subset of the status bits causes the processor to wake from Sleep
mode when they are set.

GPIO Interface (XV)

Embedded Systems, KAIST 17

GPIO Edge Detect Status Register (GEDR0, GEDR1,
GEDR2)

When an edge detect occurs on a pin that matches the type of
edge programmed in the GRER and/or GFER registers, the
corresponding status bit is set in GEDR.
Once a GEDR bit is set by an edge event, the bit remains set until
the user clears it by writing a one to the status bit. Writing a zero
to a GEDR status bit has no effect.
Each edge detect that sets the corresponding GEDR status bit for
GPIO[84:0] can trigger an interrupt request. GPIO[84:2] together
form a group that can cause one interrupt request to be triggered
when any one of GEDR[84:2] are set. GPIO[0] and GPIO[1]
cause independent first-level interrupts.

GPIO Interface (XVI)

Embedded Systems, KAIST 18

GPIO Alternate Function Register (GAFR0_L, GAFR0_U,
GAFR1_L, GAFR1_U, GAFR2_L, GAFR2_U)

Each GPIO can be configured to be either a generic GPIO pin, one of 3
alternate input functions, or one of 3 alternate output functions.
To select any of the alternate input functions, the GPDR register must
configure the GPIO to be an input. Similarly, only GPIOs configured as
outputs by the GPDR can be configured for alternate output functions.
Each GPIO pin has a pair of bits assigned to it whose values determine
which function (normal GPIO, alternate function 1, alternate function 2
or alternate function 3) the GPIO performs.

• “00” indicates normal GPIO function
• “01” selects alternate input function 1 (ALT_FN_1_IN) or alternate output

function 1 (ALT_FN_1_OUT)
• “10” selects alternate input function 2 (ALT_FN_2_IN) or alternate output

function 2 (ALT_FN_2_OUT)
• “11” selects alternate input function 3 (ALT_FN_3_IN) or alternate output

function 3 (ALT_FN_3_OUT)

6. GPIO Driver

Embedded Systems, KAIST 19

GPIO LED driver
Circuit diagram

GPIO Driver (II)

Embedded Systems, KAIST 20

Installing GPIO Driver
Makefile

KERNELDIR = /project/ez-x5/test/kernel/linux
DEV_INCLUDEDIR = $(KERNELDIR)/include -I./ -I../include
include $(KERNELDIR)/.config
CFLAGS += -Wall –D__KERNEL__ -DMODULE $(DEV_INCLUDEDIR)

$(DEBFLAGS)
TARGET = gpio_dev
OBJS = $(TARGET).o
SRCS = gpio.c
CFLAGS += -O2 –g

All: $(TARGET).o
$(TARGET).o: $(SRCS:.c=.o)

$(LD) –r $^ -o $@

Clean:
rm –f *.o *~ core .depend

Dep:
gccmakeup $(DEV_INCLUDEDIR) $(SRCS)

#DO NOT DELETE

GPIO Driver (III)

Embedded Systems, KAIST 21

Installing GPIO Driver (II)
Edit GPIO driver

Makefile (for driver)
vi gpio.c
vi gpio.h

Edit application
Makefile (for application)
vi test.c
make

Generated: test_app

Compile driver
make clean
make dep
make

Generated: gpio.o gpio_dev.o

GPIO Driver (IV)

Embedded Systems, KAIST 22

int init_module(void)
{

int result;

// 장치를등록한다.
result = register_chrdev(GPIO_MAJOR, DEVICE_NAME, &gpio_fops);
…
printk(" Init madule, Succeed. This Device is %s and Major Number is

[%d]\n", DEVICE_NAME, GPIO_MAJOR);

// GPIO 제어를 위한 GPIO 초기화
GPIO_IO_Init();

return 0; /* 성공 */
}

void cleanup_module(void)
{

// 모듈을해제한다..
if (!unregister_chrdev(GPIO_MAJOR, DEVICE_NAME))

printk("%s Device Exit Sucess...\n", DEVICE_NAME);
else

printk("%s Device Exit Fail...\n", DEVICE_NAME);
}

GPIO Driver (V)

Embedded Systems, KAIST 23

void GPIO_IO_Init(void)
{

// 입력 정의
GAFR0_L &= ~(GPIO_INPUT_MASK); // Disable Alternative

Function
// GPDR0 &= ~(GPIO_INPUT_MASK); // 입력 전용으로설정

GRER0 &= ~(GPIO_INPUT_MASK); // Clear Rising edge trigger.
GFER0 &= ~(GPIO_INPUT_MASK); // Set as Falling Edge Detect

}

GPIO Driver (VI)

Embedded Systems, KAIST 24

ssize_t gpio_write(struct file *filp, const char *buf, size_t count, loff_t *f_pos)
{

const unsigned char *gpiodata = buf;
int data=0;

get_user(data, gpiodata);
gpio_outb(data);

return count;
}

int gpio_outb(int data)
{

// 출력전용
GPDR0 |= (GPIO_OUPPUT_MASK);

//GPSR은 출력 SET 레지스터
GPSR0 |= (GPIO_OUTPUT_MASK);

//GPCR은 출력 Clear 레지스터
GPCR0 = GPCR0 | (data << 8);
return 0;

}

Embedded Systems, KAIST 25

GPIO Driver (VII)

Installing GPIO Driver
(III)

Download to EZ-X5
Install GPIO module

$ insmod gpio_dev.o
Set filesystem

$ mknod /dev/GPIO c 253
0

Check module
$ lsmod

Run application program
./test_app

Remove GPIO module
$ rmmod gpio_dev.o

7. DIO Driver

Embedded Systems, KAIST 26

Overview
EZ-X5 Baord에 add-on board 추가

목표: LED lamp output and push-button switch input

Xscale의 데이터버스를 이용하여 LED 및 스위치 동작을 제어하는
방법

Xscale의 데이터버스는 32개의 입출력 신호 (D0-31)가 있으며, 입력
신호로 할것인지, 출력신호로 할 것인지를 선택하는 1개의 선택신호
(nOE)가 있다.

DIO Driver (II)

Embedded Systems, KAIST 27

Circuit diagram

DIO Driver (III)

Embedded Systems, KAIST 28

Init_module

DIO Driver (IV)

Embedded Systems, KAIST 29

Init_module (Cont’d)

DIO Driver (V)

Embedded Systems, KAIST 30

I/O region
in ez-x5.c

I/O address
in io.h

DIO Driver (VI)

Embedded Systems, KAIST 31

Io_write function in io.c

Embedded Systems, KAIST 32

DIO Driver (VII)

Io_read
function
in io.c

DIO Driver (VIII)

Embedded Systems, KAIST 33

I/O interrupt routine
Each time you press the SW1!

References

Embedded Systems, KAIST 34

GPIO Interface
PXA255 Developer’s Manual, http://developer.intel.com

GPIO Driver & DIO Driver
EZ-X5 User’s Manual, http://www.falinux.com

http://developer.intel.com/
http://www.falinux.com/

	Embedded SystemsCh 5B.Parallel Interface (II)
	Overview
	5. GPIO Interface
	GPIO Interface (II)
	GPIO Interface (III)
	GPIO Interface (IV)
	GPIO Interface (V)
	GPIO Interface (VI)
	GPIO Interface (VII)
	GPIO Interface (VIII)
	GPIO Interface (IX)
	GPIO Interface (X)
	GPIO Interface (XI)
	GPIO Interface (XII)
	GPIO Interface (XIII)
	GPIO Interface (XIV)
	GPIO Interface (XV)
	GPIO Interface (XVI)
	6. GPIO Driver
	GPIO Driver (II)
	GPIO Driver (III)
	GPIO Driver (IV)
	GPIO Driver (V)
	GPIO Driver (VI)
	GPIO Driver (VII)
	7. DIO Driver
	DIO Driver (II)
	DIO Driver (III)
	DIO Driver (IV)
	DIO Driver (V)
	DIO Driver (VI)
	DIO Driver (VII)
	DIO Driver (VIII)
	References

