Embedded Systems

Ch 6B. Serial Interface Part B

Byung Kook Kim Dept of EECS Korea Advanced Institute of Science and Technology

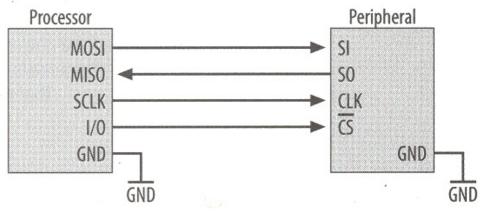
Overview

- I. Introduction to Serial Ports
- 2. RS-232C
- 3. Serial Hardware
- 4. UARTs in Xscale
- 5. Serial Peripheral Interface (SPI)
- 6. Inter Integrated Circuit (I²C)
- **7. RS-422**
- 8. Universal Serial Bus (USB)

5. Serial Peripheral Interface (SPI)

Serial Peripheral Interface

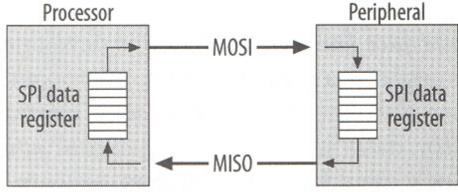
- Developed by Motorola
- To provide a low-cost and simple interface between microcontrollers and peripheral chips
- Four-wire interface
- Can be used to interface to memory, A/D converters, D/A converters, real-time clock calendars, LCD drivers, sensors, audio chips, and even other processors
- The range of components that support SPI is large and growing all the time.


SPI (II)

SPI Interface

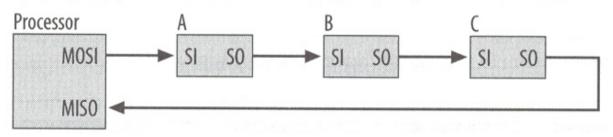
- Synchronous protocol in which all transmissions are referenced to a common clock, generated by the master processor
- The receiving peripheral (slave) uses the clock to synchronize its acquisition of the serial bit stream.
- Many chips may be connected to the same SPI interface of a master.
 - A master selects a slave to receive by asserting the slave's chip select input.

SPI (III)


- SPI signals
 - MOSI (Master Out Slave In)
 - Generated by the master
 - Labeled as SI (Serial In) or SDI (Serial Data In)
 - MISO (Master In Slave Out)
 - Generated by the slave
 - Labeled as SO (Serial Output) or SDO (Serial Data Out)
 - SCLK (Serial CLocK)
 - CSb (Chip Select)
 - Normally generated using a spare I/O pin of the master
 - SSb (Slave Select)
- Basic SPI interface ->

SPI (IV)

SPI transmission


- Both masters and slaves contain a serial shift register.
- The master starts a transfer of a byte by writing it to its SPI shift register.
- As the register transmits the byte to the slave on the MOSI line, the slave transfers the contents of its shift register back to the master on the MISO signal line ->

- The contents of the two shift registers are exchanged.
 - Both a write and a read operation are performed with the slave simultaneously.
- SPI can therefore be a very efficient protocol.

SPI (V)

- Remarks on SPI
 - Write only
 - The master ignores the byte it received.
 - Read only
 - The master transfers a dummy byte.
 - Some peripherals can handle multiple byte transfers, with a continuous stream of data shifted from the master.
 - CS for the SPI slave must remain low for the entire duration of transmission.
 - Ex: Memory chip interface
 - Write command, four address bytes (starting address), and data bytes to be stored.
 - Daisy chaining may be supported ->

SPI (VI)

SPI mode of operation (I)

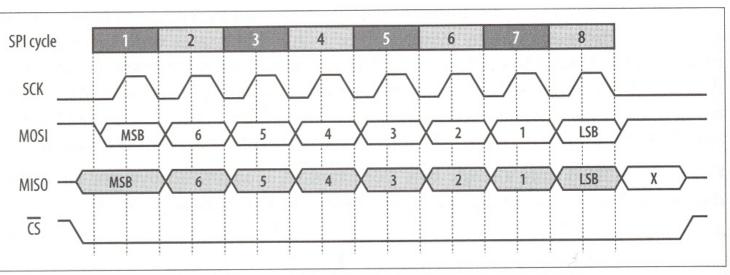


Figure 9-4. SPI timing with clock polarity low and clock phase zero

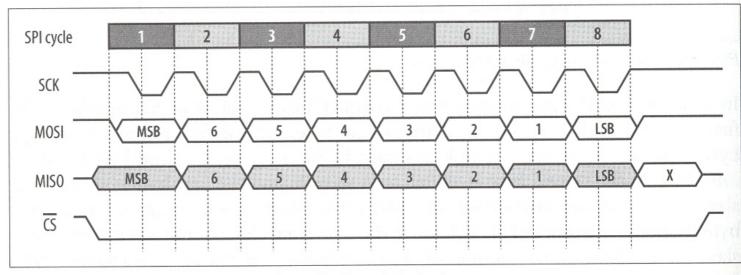


Figure 9-5. SPI timing with clock polarity high and clock phase zero

SPI (VII)

 SPI mode of operation (II)

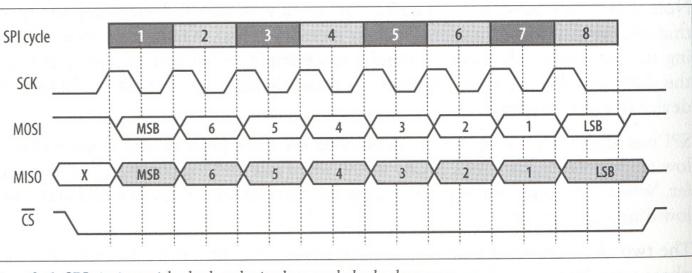


Figure 9-6. SPI timing with clock polarity low and clock phase one

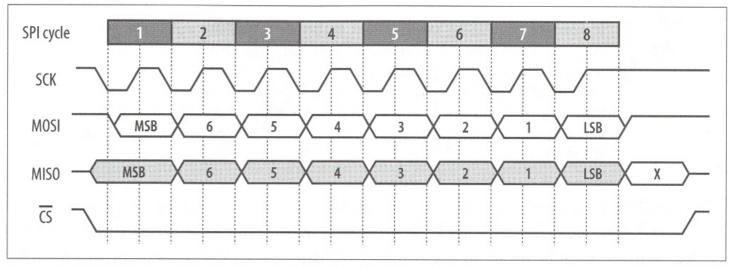
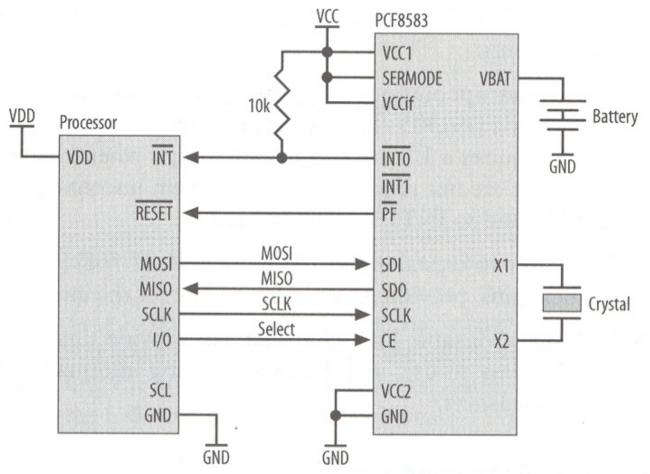
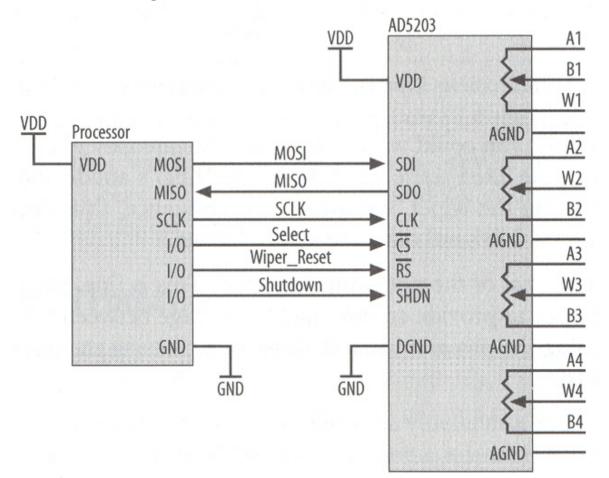



Figure 9-7. SPI timing with clock polarity high and clock phase one


SPI (VIII)

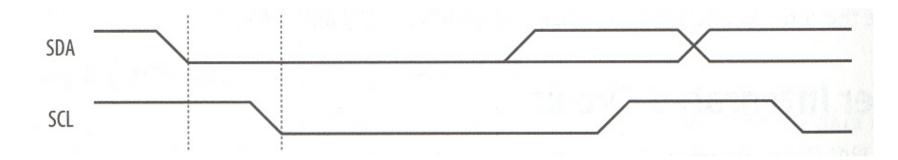
SPI-based Clock/Calendar

SPI (IX)

SPI-based digital potentiometer

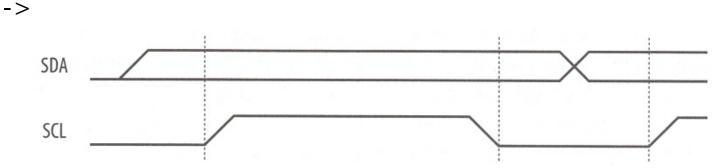
6. Inter Integrated Circuit (I²C)

I²C features

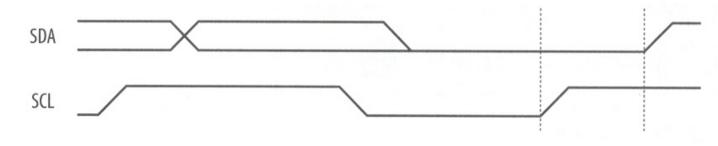

- A very cheap, yet effective, network used to interconnect peripheral devices within small-scale embedded systems.
- Uses two wires to connect multiple devices in a multi-drop bus.
- The bus is bidirectional, low-speed, and synchronous to a common clock.
- Devices may be attached or detached from the I²C bus without affecting other devices.
- Supported by Microchip, Phillips, Intel, etc.
- 100 kbps in standard mode, 400 kbps in fast mode.

I²C (Ⅱ)

- Wires of I²C
 - SDA (Serial DAta)
 - SCL (Serial CLock)
 - Both open drain, bidirectional
 - Connected to a positive power supply via a pull-up resisto.r
 - Remain high when not in use.
- Multi-master bus
 - Each device connected to the I2C bus has a unique address and can operate as a transmitter (a bus master), a receiver (a bus slave), or both.
 - Block diagram ->

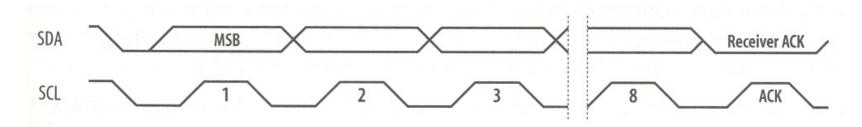

I²C (III)

- I2C operation
 - I2C shares the same signal line for master transmission and slave response.
 - When idle, both SDA and SCL are high.
 - An I2C transaction begins with SDA goes low, followed by SCL.
 - A packet transmission is commencing.
 - While SCL is low, SDA transitions for the first valid data bit.
 - Start condition ->



I²C (IV)

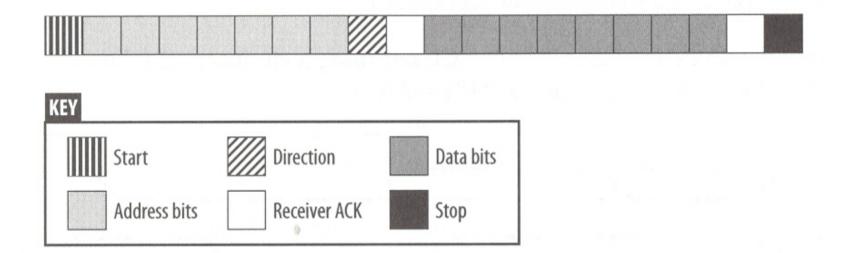
- I2C operation (cont'd)
 - The bit is sampled on the rising edge of SCL and must remain valid until SCL goes low once more.
 - SDA transitions to the next bit, before SCL goes high once more



 The transaction completes by SCL returning high followed by SDA: Stop condition ->

I²C (V)

- Remarks
 - Any number of bytes may be transmitted in an I2C packet.
 - More significant bit of the packet is transmitted first.
 - If the receiver is unable to accept any more bytes, it can abort the transmission by holding SCL low.
 - This forces the transmitter to wait until SCL is released again.
- Acknowledge
 - Each byte transmitted must be acknowledged by the receiver.
 - Upon the transmission of the 8th bit, the master releases SDA.
 - The master then generates an additional clock pulse on SCL, which triggers the receiver to acknowledge the byte by pulling SDA low (Receiver ACK) ->

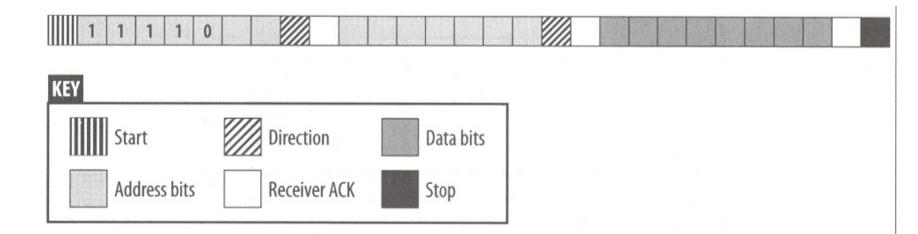


I²C (VI)

- Multimaster bus
 - More than one master may attempt to start transmission at the same time.
 - A master transmitting a 0 bit will pull SDA low, but will leave the bus in its default state if the bit is to be a 1.
 - If two masters begin simultaneous transmission, a master leaving the bus in its default state for 1 1 bit, but detecting the bus pulled low by another master, will register an error condition and abort the transmission.

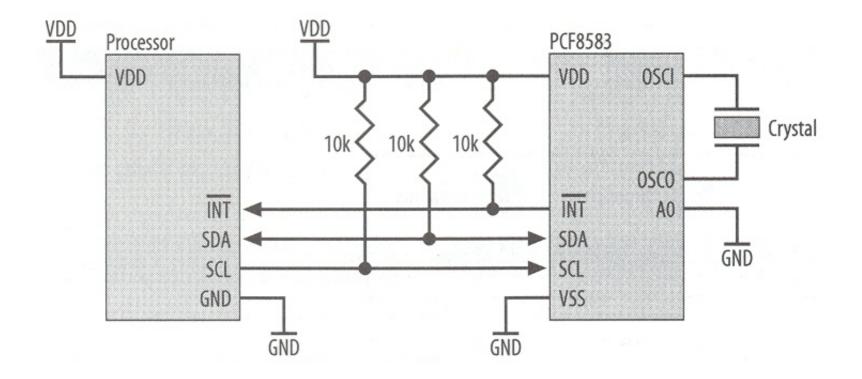
1²C (VII)

I2C packet ->

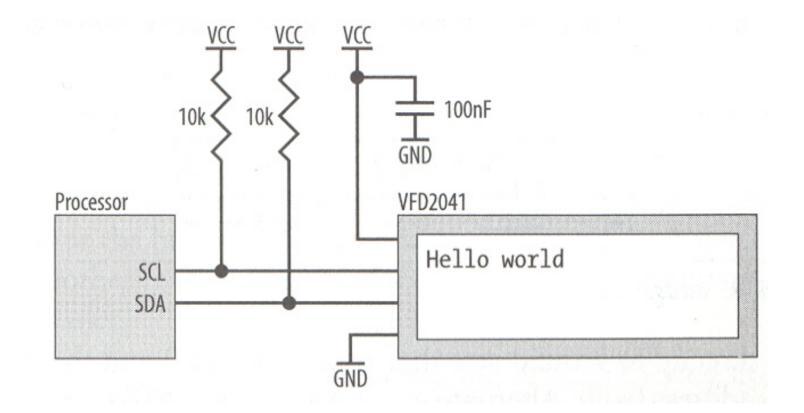


I²C (VIII)

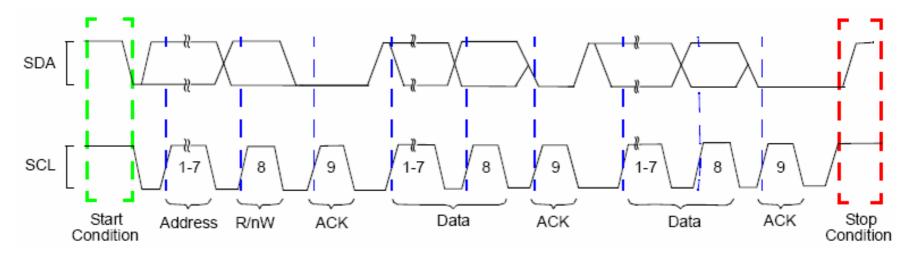
- Special addresses
 - General call address (%0000000 with dir 0)
 - Broadcasts to all I2C devices.
 - The master determines what slaves are available.
 - Second byte
 - 0x06: Reset slaves and respond with their addresses.
 - 0x04: Respond with their addresses without reset.
 - Other even data: Ignored.
 - Other odd data: A master transmits its own address to other masters.
 - Other bits contain the master's address.
 - Start byte (%0000001)
 - Indicate that a long data transfer is beginning.


I²C (IX)

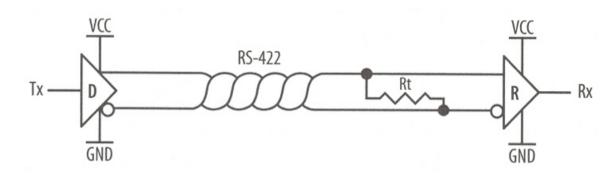
- Extended 10-bit addressing
 - The first address byte begins with %11110xx
 - Address: 2 least-significant bits in the first byte and 8 bits of the second byte ->



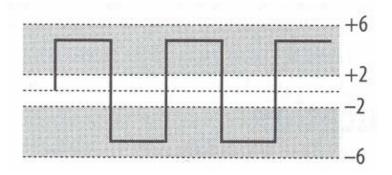
Adding a real-time clock with I2C


1²C (XI)

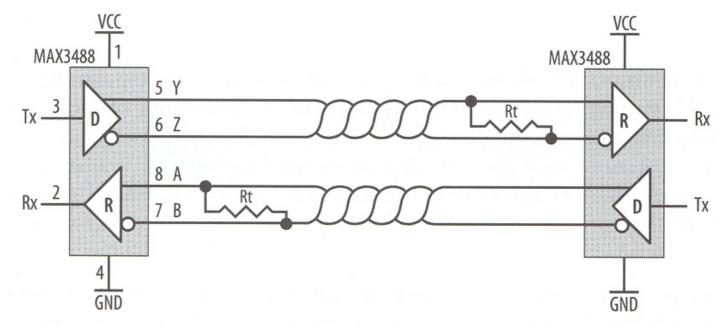
Adding a small display with I2C


I²C in Xscale (XII)

- Register Definitions
 - I2C Bus Monitor Register (IBMR)
 - I2C Data Buffer Register (IDBR)
 - I2C Control Register (ICR)
 - I2C Status Register (ISR)
 - I2C Slave Address Register (ISAR)
- Complete data transfer


7. RS-422

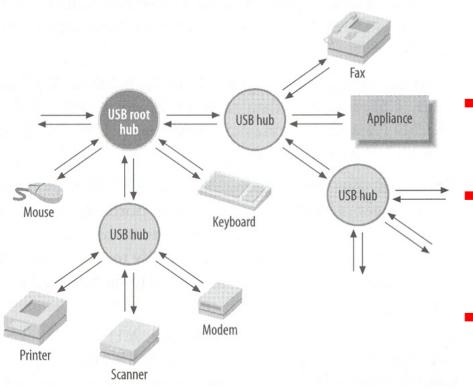
- RS-422
 - Uses the difference signal
 - Balanced transmission: Not referenced to local ground.
 - Two wires: twisted pair or differential pair
 - Any noise or interference will affect both wires of the twisted pair, but the difference between them will be less effected: Common mode rejection.
 - Can carry data over longer distances and at higher rates with greater noise immunity than RS-232C.
 - Up to 1200 meters
 - RS-422 ->



RS-422 (II)

RS-422 voltage levels ->

Bidirectional RS-422 interface ->



8. Universal Serial Bus (USB)

USB

- Allows peripherals and computers to interconnect in a standard way with a standard protocol.
- Possibility of plug and play for peripherals.
- Supports the connection of printers, modems, mice, keyboard, joysticks, scanners, cameras, and much more.
- Advantage for the user
 - No manual setup: Devices interact with the host computer's OS.
 - Extra layer of complexity to software.
 - Can provide power to peripherals through the cable.
 - No external power supply (or power cable) is required.
 - Hot swappable.
- Specifications
 - USB 1.1: 1.5 and 12 Mbps
 - USB 2.0: 480 Mbps
 - <u>http://www.usb.org</u>

USB (II)

- A high-speed bus up to 127 devices with tiered star structure ->
 - Root hub
 - USB hub

The host will regularly poll hubs for their status.

Bus enumeration

- The detection and identification of USB devices
- USB supports only one host computer.
 - Specifically intended for peripheral interfacing.

Structures of USB

USB (III)

- USB packets
 - Four types of transfers
 - Control transfer: Configure the bus and devices, and return status information
 - Bulk transfer: Moves data asynchronously over USB.
 - Isochronous transfer: Used to moving time-critical transfer. Unidirectional and without CRC (Cyclic Redundancy Check)
 - Interrupt transfer: Receive data at regular intervals, ranging from 1 to 255 ms.
 - Packets
 - SYNC (synchronization): locks the receiver's clock. 0x01.
 - PID (Packet ID): Functions. 8 bits.
 - Upper 4 bit = inverse of lower 4 bit. For additional error checking.
 - Content (data, address, etc)
 - CRC (Cyclic Redundancy Check).

USB (IV)

USB packet types

Token:

Data:

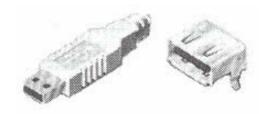
Handshaking:

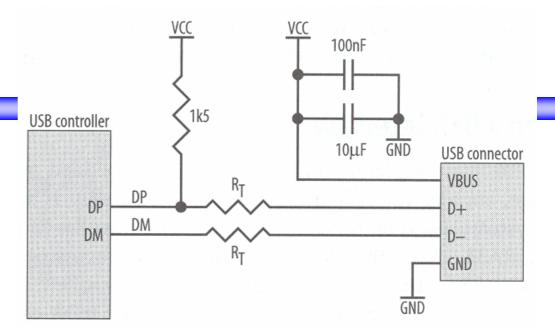
In	SYNC	PID	Address	End point	CRC
	0x01	0x96	7 bits	4 bits	5 bits
Out	SYNC	PID	Address	End point	CRC
	0x01	0x1E	7 bits	4 bits	5 bits
Setup	SYNC	PID	Address	End point	CRC
	0x01	0xD2	7 bits	4 bits	5 bits
Start of	SYNC	PID	Frame number		CRC
frame	0x01	0x5A	11 bits		5 bits
Data 0	SYNC	PID	Data		CRC
	0x01	0x3C	0-1023 bits		16 bits
Data 1	SYNC	PID	Data		CRC
	0x01	0xB4	0-1023 bits		16 bits
Ack	SYNC 0x01	PID 0x2D			
Nak	SYNC 0x01	PID 0xA5			
Stall	SYNC 0x01	PID OxE1			

0x01

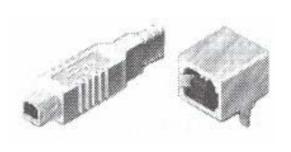
0xE1

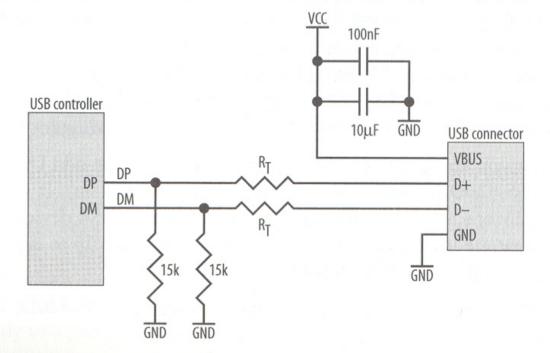
USB (V)


- USB physical interface
 - 4 wires, shielded


Connector pin	Signal	Purpose	Wire color
1	VBUS	USB device power (+5V)	Red
2	D+ (DP)	Differential data line	Green
3	D- (DM)	Differential data line	White
4 GNI		Power and signal ground	Black

- D+, D- twisted
- Vbus: bus-powered, self-powered devices.


USB (VI)


- USB Connectors
 - Upstream: Series A

Downstream: Series B

References

SPI, I2C, RS422, and USB

- John Catsoulis, "Designing Embedded Hardware", O'Reilly, 2003.
- I2C

PXA255 Developer's Manual, http://developer.intel.com

