
Embedded Systems

Ch 8
ARM Architecture

Byung Kook Kim
Dept of EECS

Korea Advanced Institute of Science and Technology

Overview

Embedded Systems, KAIST 2

1. The Reduced Instruction Set
Computer (RISC)
2. The ARM Architecture
3. The ACORN RISC Machine
4. Architectural Inheritance
5. The ARM Programmer’s Model
6. ARM Development Tools

Embedded Systems, KAIST 3

1. The Reduced Instruction
Set Computer

Patterson and Ditzel, 1980
The case for the reduced instruction computer

Optimal architecture for a single-chip processor need not be the
same as the optimal architecture for a multi-chip processor.

Berkeley processor design project
Berkeley RISC I

Incorporated a Reduced Instruction Set Computer (RISC)
architecture
Much simpler than CISC processors
Order of magnitude less design effort to develop, but similar
performance

The Reduced Instruction Set
Computer (II)

Embedded Systems, KAIST 4

RISC architecture
A fixed (32-bit) instruction size with few formats

CISC processors typically had variable length instruction sets with
many formats

A load-store architecture where instructions that process data
operate only on registers and are separate from instructions that
access memory

CISC processors typically allowed values in memory to be used as
operands in data processing instructions

A large register bank of thirty-two 32-bit registers, all of which
could be used for any purpose, to allow the load-store
architecture to operate efficiently

CISC register sets were getting larger, but none was this large and
most had different registers for different purposes (Ex: data and
address registers in Motorola 68000)

The Reduced Instruction Set
Computer (III)

Embedded Systems, KAIST 5

RISC organization
Hard-wired instruction decode logic

CISC processors used large microcode ROMs to decode their
instructions

Pipelined execution
CISC processors allowed little, if any, overlap between consecutive
instructions (though they do now)

Single-cycle execution
CISC processors typically took many clock cycles to complete a single
instruction.

Embedded Systems, KAIST 6

The Reduced Instruction Set
Computer (IV)

RISC advantages
A smaller die size
A shorter development time
A higher performance

RISC drawbacks
RISCs generally have poor code density compared with CISCs

Due to fixed-length instruction
Increasing the cache miss rate

RISCs don’t execute x86 code
For IBM-PC compatible

Embedded Systems, KAIST 7

The Reduced Instruction Set
Computer (V)

ARM processor
Based on RISC principles
Less poor code density than most other RISCs
Thumb architecture

16-bit compressed form of the original 32-bit ARM
Dynamic decompression hardware in the instruction pipeline
Code density better than most CISC processors

Beyond RISC
No development visible at the time of writing
Better instruction set

Efficient implementation
Multimedia support

2. The ARM Architecture

Embedded Systems, KAIST 8

ARM processor
Developed at Acorn Computers Limited of Cambridge, England

1983-1985

The first RISC microprocessor developed for commercial use
ARM Limited established in 1990

Licensed to many semiconductor manufacturers

Market leader for row-power and cost-sensitive embedded
applications
Supported by a toolkit

Instruction set emulator for hardware modeling, software testing,
and benchmarking
Assembler, C and C++ compilers, linker, and a symbolic debugger

3. The Acorn RISC Machine

Embedded Systems, KAIST 9

ARM processor
Developed at Acorn Computers Limited, Cambridge, England

1983-1985
ARM: Acorn RISC Machine

BBC (British Broadcasting Corporation) micro
UK personal computer with 8-bit 6502 microprocessor, 1982.

Design of a proprietary microprocessor
Hundreds of man-years to develop

Berkeley RISC I
Designed by a few postgraduate students under one year
Competitive with the leading commercial offerings

ARM was born through a serendipitous combination of factors
Acorn expanded to Advanced RISC Machine.

4. Architectural Inheritance

Embedded Systems, KAIST 10

Features used (from Berkeley RISC design)
A load-store architecture
Fixed-length 32-bit instructions
3-address instruction formats.

Features rejected
Register windows

32 visible register window out of large register banks
Large chip area for registers: Rejected on cost grounds

Delayed branches
Branch takes effect after the following instructions has executed
Remove atomicity of individual instructions
More complex exception handling

Single-cycle execution of all instructions
Possible for separate data and instruction memories

Architectural Inheritance (II)

Embedded Systems, KAIST 11

Simplicity
Keep the design simple

Full-custom CMOS design

Minimize risks which are under your control

Simplicity of ARM
Instruction set architecture

Hardware organization

Retain a few CISC features
Significantly better code density than a pure RISC

Result
Power-efficiency

Small core size

5. The ARM Programmer’s Model

Embedded Systems, KAIST 12

Visible registers in an ARM processor

r13_und
r14_und r14_irq

r13_irq

r14_abt r14_svc

usable in user mode

system modes only

r13_abt r13_svc

r8_fiq
r9_fiq

r10_fiq
r11_fiq

r14_fiq
r13_fiq
r12_fiq

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15 (PC)

SPSR_undSPSR_irqSPSR_abtSPSR_svcSPSR_fiqCPSR

svc
mode

abort
mode

irq
mode

undefined
mode

fiq
modeuser mode

The ARM Programmer’s Model (II)

Embedded Systems, KAIST 13

User-level program
15 general-purpose registers (r0 to r14)
Program counter (r15)
Current program status register (CPSR)
Remaining registers: only for system–level programming and
handling exceptions

CPSR
Stores the condition code bits

N: Negative. Bit 31
Z: Zero. Bit 30
C: Carry. Bit 29
V: oVerflow. Bit 28

N Z C V unused mode
31 28 27 8 7 6 5 4 0

I F T

The ARM Programmer’s Model (III)

Embedded Systems, KAIST 14

Memory system
Linear array of bytes from 0 to 232 -1
Data items: b-bits, 16-bits, 32-bits
Words are always aligned on 4-byte boundaries
Half-words are aligned on even byte boundaries
Memory organization

Little endian ->
Big endian.

half-word4

word16

0123

4567

891011

byte0
byte

12131415

16171819

20212223

byte1byte2

half-word14

byte3

byte6

address

bit 31 bit 0

half-word12

word8

The ARM Programmer’s Model (IV)

Embedded Systems, KAIST 15

Load-store architecture
Instruction set processes values in registers, and always place the
results into a register.
Memory access instructions:

Copy memory into registers (Load instruction)
Copy register values into memory (Store instruction)

No memory-to-memory operations such as
Mem + reg -> mem

ARM instruction categories
Data processing instructions
Data transfer instructions: Load, store
Control flow instructions: Branch, branch and link, trap into system
code (system call)

The ARM Programmer’s Model (V)

Embedded Systems, KAIST 16

Supervisor mode (protected)
Ensure that user code cannot gain supervisor privileges

System-level functions can only be accessed through specified
supervisor calls

Access hardware peripheral registers

User-level program
Algorithms to operate on the data owned by their programs

Operating system
Handle all transactions with the world outside their programs

The ARM Programmer’s Model (VI)

Embedded Systems, KAIST 17

Features of the ARM instruction set
The load-store architecture
3-address data processing instructions

2 source and destination registers

Conditional execution of every instruction
Inclusion of very powerful load and store multiple register
instructions
Ability to perform a general shift operation and a general ALU
operation in a single instruction that executes in a single clock
cycle
Open instruction set extension through the coprocessor
instruction set, including adding new registers and data types to
the programmer’s model
A very dense 16-bit compressed representation of the instruction
set in the Thumb architecture

The ARM Programmer’s Model (VI)

Embedded Systems, KAIST 18

ARM exceptions
Supports a range of interrupts, traps, and supervisor calls
General handling

The current state is saved by copying the PC into r14_exc and the
CSPR into SPSR_exc (exc: exception type)
The processor operating mode is changed to the appropriate
exception mode
The PC is force to a value between 00h and 1Ch, the particular value
depending on the type of exception (vector addresses).

R13_exc
Initialized to point to a dedicated stack in memory
TO save some user registers for use as work registers

Return to user program
Restore user registers
Instruction to restore the PC and the CSPR.

6. ARM Development Tools

Embedded Systems, KAIST 19

Software development tools
ARM Limited
Third party
Public domain tools

ARM Gcc compiler

Cross-development
Run on a different architecture
– PC Windows, Unix
workstation
C & assembler: .aof files ->
Linker: .aif file
Symbolic debugger: ARMsd

ARM development board
ARMulator: software emulation

assemblerC compiler

C source asm source

.aof

C libraries

linker

.axf

ARMsd

debug

ARMulator development

system model

board

object
libraries

ARM Development Tools (II)

Embedded Systems, KAIST 20

ARM C compiler
Compliant with the ANSI (American National Standards Institute)
standard for C
Supported by the appropriate library of standard functions
Uses the ARM Procedure Call Standard for all externally available
functions
Can produce assembly source output instead of ARM object
format

Inspection, optimization
Can produce Thumb code

ARM assembler
Full macro assembler
Produces ARM object format output
Near machine-level

ARM Development Tools (III)

Embedded Systems, KAIST 21

The linker
Takes one or more object files

Combines them into an executable program

Resolves symbolic references between the object files

Extracts object modules from libraries as needed by the program

Output
Code to run in RAM or ROM

Debug tables
Full symbolic debug tables

Object library modules
Not executable

Ready for efficient linking with object files in the future

ARM Development Tools (IV)

Embedded Systems, KAIST 22

ARMsd (ARM symbolic debugger)
A front-end interface to assist in debugging programs running

Under emulation (on the ARMulator) or
Remotely on a target system (such as ARM development board)

Remote debug protocol
Via serial line, ethernet, or through JTAG test interface

Functions
Setting breakpoints

Cause execution to halt
Processor state can be examined

Full source level debugging
Debug a program using C source file to specify breakpoints
Use variable names from the original program

ARM Development Tools (V)

Embedded Systems, KAIST 23

ARMulator (ARM emulator)
A suite of programs that models the behavior of various ARM
processor cores
Levels of accuracy

Instruction-accurate modeling: without regard to precise timing
Cycle-accurate modeling: exact behavior on a cycle-by-cycle basis
Timing-accurate modeling: Signals at the correct time within a cycle,
allowing logic delays to be accounted for.

Run considerably slower than the real hardware
Test ARM program without actual hardware
Complete, timing-accurate, C model of the target system
Core of a timing-accurate ARM behavioral model in a hardware
simulation environment such as VHDL.

ARM Development Tools (VI)

Embedded Systems, KAIST 24

ARM Software Development Toolkit
Complete set of tools as above
Utility programs and documentation
CD-ROM with a PC version & Sun or HP Unix version

Full Window-based project manager
ARM Project Manager

A graphical front-end for the tools
Supports building a library or executable image from

Source files (C, assembler, and so on)
Object files
Library files

Build options
Output optimization: for code size or execution time
Debug or release form
Target ARM processor.

References

Embedded Systems, KAIST 25

ARM architecture
Steve Furber, “ARM System-on-Chip Architecture”,
Addison Wesley, 2000.

	Embedded SystemsCh 8ARM Architecture
	Overview
	1. The Reduced Instruction Set Computer
	The Reduced Instruction Set Computer (II)
	The Reduced Instruction Set Computer (III)
	The Reduced Instruction Set Computer (IV)
	The Reduced Instruction Set Computer (V)
	2. The ARM Architecture
	3. The Acorn RISC Machine
	4. Architectural Inheritance
	Architectural Inheritance (II)
	5. The ARM Programmer’s Model
	The ARM Programmer’s Model (II)
	The ARM Programmer’s Model (III)
	The ARM Programmer’s Model (IV)
	The ARM Programmer’s Model (V)
	The ARM Programmer’s Model (VI)
	The ARM Programmer’s Model (VI)
	6. ARM Development Tools
	ARM Development Tools (II)
	ARM Development Tools (III)
	ARM Development Tools (IV)
	ARM Development Tools (V)
	ARM Development Tools (VI)
	References

