
Embedded Systems

Ch 9
Interrupt and Timer

Byung Kook Kim
Dept of EECS

Korea Advanced Institute of Science and Technology

Overview

Embedded Systems, KAIST 2

1. Interrupts and Exceptions

2. Interrupt Controller in Xscale

3. Exceptions in ARM

4. Real-Time Clock in Xscale

5. OS Timer in Xscale

1. Interrupts and Exceptions

Embedded Systems, KAIST 3

What is an interrupt?
Analogy in everyday life:

Phone call while reading a book

An event either from an internal or external source
where

a processor will stop its current processing thread,

switch to a different instruction sequence, and then

resume its current processing.

Interrupts and Exceptions (II)

Embedded Systems, KAIST 4

Notes on interrupt
The most important aspect of any embedded system design.

Potential for many problems when debugging a system.

Affect the overall design and structure of the system.
Allows the designer to split software into two types: background and
foreground.
Can be developed in modular fashion.

Interrupt service routine (ISR)
Data transfer code associated with device hardware which generates
the interrupt.
Background processes.

Interrupts and Exceptions (III)

Embedded Systems, KAIST 5

Interrupt sources
Internal interrupts

Generated by on-chip peripherals
Connection for interrupt is already made

External interrupts
Generated by external peripherals of the processor
Provided through external pins of the processor, which can be driven
by external peripherals.

Exceptions
Extended to cover any event that causes the processor to change to
a service routines.
Normally coupled with a change in processor’s mode.

Software interrupts
Provide an interface to other mode (privileged mode) or software
(such as operating system).
Parameter passing via registers.

Non-maskable interrupt (NMI)
External interrupt that cannot be masked out.
Highest priority. (~Fire!)

Interrupts and Exceptions (IV)

Embedded Systems, KAIST 6

Recognizing an interrupt
Edge triggered

Low-to-high or high-to-low transition

Level triggered
Low or high level
Sampled on regular basis (clock or every instruction)
Minimum pulse width may be defined.

Maintaining the interrupt
Mostly should maintain the interrupt until explicitly serviced and the
source told to remove it.

Internal queuing
Any subsequent interrupts that have the same level will be
maintained after the first one has been serviced and its signal
removed.

Interrupts and Exceptions (V)

Embedded Systems, KAIST 7

The interrupt mechanism
To hold essential data:

Stack: MC68000 or 80x86
Special internal registers: RISC processors

At the instruction boundary, the processor must save certain
state information to allow resuming the current process.

Copy of condition code register
Program counter
Return address
The register set

Get the location of ISR to service the interrupt
Vector table in memory (fixed location)
Appropriate vector can be supplied by the peripheral or pre-assigned.

Starts the code within ISR until it reaches a return from interrupt
instruction.
Processor reloads the status information and processing
continues.

Interrupts and Exceptions (VI)

Embedded Systems, KAIST 8

Fast interrupts
Very fast servicing at the expense of several restrictions.

Without saving the processor context
Ex: DSP56000

The external interrupt is synchronized with the processor clock for
two successive clock cycles
The processor fetches two instructions from the appropriate vector
location and executes them.

Once completed, the program counter simply carries on as if
nothing has happened.

Adv:
No stack frame building: Fast

Disadv:
The size of ISR and resource restricted.
Usually assign a couple of address registers for the fast interrupt
routine.

Interrupts and Exceptions (VII)

Embedded Systems, KAIST 9

Interrupt Controllers
Provides a large number of interrupt pins that can be allocated to
many external devices.

At least eight and higher numbers can be supported by cascading
two or more controllers together (Expandability)
Ex: Intel 8259 Programmable Interrupt Controller

IBM PC: Two 8259’s cascaded to give 15 interrupt levels.

Orders the interrupt pins in a priority level so that high level
interrupt will inhibit a lower level interrupt (Interrupt priority)
May provide registers for each interrupt pin which contain the
vector number to be used during an interrupt acknowledge
cycle.

Allow peripherals without vector capability.
Can provide interrupt masking

Allow the system software to decide when an interrupt is allowed.

Interrupts and Exceptions (VIII)

Embedded Systems, KAIST 10

Interrupt Latency
Time taken by the processor from recognition of the interrupt to
the start of the ISR.

Defines several aspects of an embedded system with reference to its
ability to respond to real-time events.

Sources of interrupt latency
The time taken to recognize the interrupt
The time taken by the CPU to complete the current instruction

CISC: Dep. on instruction (Ex: FP divide)
RISC: 1 or 2 clocks

The time for the CPU to perform a context switch
CISC: block store to the stack
RISC: simply switching registers (register windowing or shadowing)

The time to fetch the interrupt vector
Cache miss?

The time taken to start the interrupt service routine execution.

Interrupts and Exceptions (IX)

Embedded Systems, KAIST 11

Do’s and Don’ts
Always expect the unexpected interrupt

Always include a generic handler for all unused/unexpected
exceptions.

Don’t expect too much from an interrupt
Don’t overload the system with too many interrupts or put too much
into the ISR.

Use handshaking
Do not remove the interrupt until explicitly acknowledged.

Control resource sharing
Variables used in normal program and ISR.

Beware false interrupts
Noise and other factors

Controlling interrupt levels
NO priority inversion

Controlling stacks
Prevent stack from overflowing.

2. Interrupts in Xscale

Embedded Systems, KAIST 12

Introduction
All on-chip interrupts are enabled, masked, and routed to the
core FIQ or IRQ.

Each interrupt is enabled or disabled at the source through an
interrupt mask bit.
Generally, all interrupt bits in a unit are ORed together and present a
single value to the interrupt controller.
Each interrupt goes through the Interrupt Controller Mask Register
and then the Interrupt Controller Level Register directs the interrupt
into either the IRQ or FIQ.

If an interrupt is taken, the software may read the Interrupt
Controller Pending Register to identify the source.

After it identifies the interrupt source, software is responsible for
servicing the interrupt and clearing it in the source unit before exiting
the service routine.

Interrupts in Xscale (II)

Embedded Systems, KAIST 13

The interrupt controller
provides masking capability for all interrupt sources and
generates either an FIQ or IRQ processor interrupt.

Two-level structure
The first level:

identifies the interrupts from all the enabled and unmasked interrupt
sources in the Interrupt Controller Mask Register (ICMR).

The second level:
uses registers contained in the source device (the device generating
the first-level interrupt bit).
gives additional information about the interrupt
used inside the interrupt service routine.
Multiple second-level interrupts are OR’ed to produce a first-level
interrupt bit.

Interrupts in Xscale (III)

Embedded Systems, KAIST 14

Registers for first level interrupt control
Interrupt Controller Pending Register (ICPR)

identifies all the active interrupts within the system

Interrupt Controller IRQ Pending Register (ICIP)
contains the interrupts from all sources that can generate an IRQ
interrupt.

Interrupt Controller FIQ Pending Register (ICFP)
contains the interrupts from all sources that can generate an FIQ
interrupt.

The Interrupt Controller Level Register (ICLR)
programmed to send interrupts to the ICIP to generate an IRQ or
FIQ.

Interrupts in Xscale (IV)

Embedded Systems, KAIST 15

Interrupt source identification
In most cases, the root cause of an interrupt can be determined
by reading two register locations:

the ICIP for an IRQ interrupt or
the ICFP for an FIQ interrupt.

Then read the status register within that device to find the exact
function requesting service.

Idle Mask
When the ICCR[DIM] bit is zero (Reset state)

Interrupt Controller Control Register [Disable Idle Mask]
The Interrupt Mask Register is ignored during Idle mode, and all
enabled interrupts cause the processor to exit from idle mode.

Otherwise (ICCR[DIM]=one)
only unmasked interrupts cause the processor to exit from idle mode.

Interrupt in Xscale (V)

Embedded Systems, KAIST 16

Interrupt Controller Block Diagram

Interrupt in Xscale (VI)

Embedded Systems, KAIST 17

Interrupt Controller Register Definitions
Interrupt Controller Mask register (ICMR)

0 – Pending interrupt is masked from becoming active (interrupts are
NOT sent to CPU or Power Manager).
1 – Pending interrupt is allowed to become active (interrupts are
sent to CPU and Power Manager).

Interrupt Controller Level register (ICLR)
0 – Interrupt routed to IRQ interrupt input.
1 – Interrupt routed to FIQ interrupt input.

Interrupt Controller Control register (ICCR)
Disable Idle mask (bit 0):
0 – All enabled interrupts bring the processor out of idle mode.
1 – Only enabled and unmasked (as defined in the ICMR) bring the
processor out of idle mode.

Interrupt in Xscale (VII)

Embedded Systems, KAIST 18

Interrupt Controller Register Definitions (II)
Interrupt Controller IRQ Pending register (ICIP)

IRQ Pending x (where x = 8 through 14 and 17 through 31):
0 – IRQ NOT requested by any enabled source.
1 – IRQ requested by an enabled source.

Interrupt Controller FIQ Pending register (ICFP)
FIQ Pending x (where x = 8 through 14 and 17 through 31):
0 – FIQ NOT requested by any enabled source.
1 – FIQ requested by an enabled source.

Interrupt in Xscale (VIII)

Embedded Systems, KAIST 19

Interrupt Controller Register
Definitions (III)

Interrupt Controller Pending
register (ICPR)

IS31: RTC Alarm Match Register
Interrupt Pending

1 – Interrupt pending due to RTC Alarm
Match Register.

IS30: RTC HZ Clock Tick
IS29: OS Timer Match Register 3
IS28: OS Timer Match Register 2
IS27: OS Timer Match Register 1
IS26: OS Timer Match Register 0
IS25: DMA Channel Service
Request
IS24: SSP Service Request
IS23: MMC Status/Error Detection

IS22: FFUART Transmit/Receive/Erro
IS21: BTUART Transmit/Receive/Error
IS20: STUART Transmit/Receive/Error
IS19: ICP Transmit/Receive/Error
IS18: I2C Service Request
IS17: LCD Controller Service Request
IS16: Network SSP Service Request
IS14: AC97
IS13: I2S
IS12: Performance Monitoring Unit (PMU)
IS11: USB Service
IS10 GPIO[84:2] Edge Detect
IS9: GPIO[1] Edge Detect
IS8: GPIO[0] Edge Detect
IS7: Hardware UART Service Request
Interrupt Pending.

3. Exceptions in ARM

Embedded Systems, KAIST 20

Operating modes of ARM
User mode: Most programs
Privileged mode: Handle exceptions and supervisor calls

Current operating mode
Defined by CPSR[4:0]

N Z C V unused mode
31 2827 8 7 6 5 4 0

I F T

CPSR[4 :0] Mo de Us e Reg i s ters
10000 User Normal user code user
10001 FIQ Processing fast interrupts _fiq
10010 IRQ Processing standard interrupts _irq
10011 SVC Processing software interrupts (SWIs) _svc
10111 Abort Processing memory faults _abt
11011 Undef Handling undefined instruction traps _und
11111 System Running privileged operating system tasks user

Exceptions in ARM (II)

Embedded Systems, KAIST 21

Privileged mode
Can only be entered through controlled mechanism
Suitable memory protection

Fully protected operating system to be built.

SPSRs
Each privileged mode has associated with Saved Program
Status Register (SPSR), except system mode.
Used to save the content of CPSR when entering privileged
mode.
If the privileged mode to be re-entrant, the SPSR must be
copied into a general register and saved.

Exceptions in ARM (III)

Embedded Systems, KAIST 22

ARM exception groups
Exceptions generated as a direct effect of executing an
instruction

Software interrupts
Undefined instructions (including coprocessor instructions when
requested but absent)
Prefetch aborts: Memory fault during fetch

Exceptions generated as a side-effect of an instruction
Data aborts: Memory fault during a load or store data access

Exceptions generated externally, unrelated to the instruction flow
Reset
IRQ (Interrupt Request)
FIQ (Fast Interrupt Request)

Exceptions in ARM (IV)

Embedded Systems, KAIST 23

Exception entry
ARM completes the current instruction

Changes the operating mode to the particular exception

Saves the address of the instruction following the exception entry
instruction in r14 of the new mode

Save the old value of CPSR in the SPSR of the new mode

Disables IRQs by setting bit 7 of CPSR. Disables FIQs by setting
bit 6 of CPSR (for FIQ exception)

Force the PC to begin executing at the relevant vector address.
Normally the vector address will contain a branch to the relevant
routine.

Exceptions in ARM (V)

Embedded Systems, KAIST 24

Exception vector address

Registers usage
Two registers of the privileged mode saves

Return address: r14
Stack pointer: r13

The stack pointer may be used to save other user registers so
that they can be used by the exception handler.
FIQ mode have additional private registers (r8 to r12) to give
better performance (by avoiding the need to save user registers).

Ex cepti o n Mo de Vecto r addres s
Reset SVC 0x00000000
Undefined instruction UND 0x00000004
Software interrupt (SWI) SVC 0x00000008
Prefetch abort (instruction fetch memory fault) Abort 0x0000000C
Data abort (data access memory fault) Abort 0x00000010
IRQ (normal interrupt) IRQ 0x00000018
FIQ (fast interrupt) FIQ 0x0000001C

Exceptions in ARM (VI)

Embedded Systems, KAIST 25

Exception return
Once the exception has been handled, the user task is normally
returned

Sequence
Any modified user registers must be restored from the handler’s
stack
The CPSR must be restored from the appropriate SPSR
The PC must be changed back to the relevant instruction address in
the user instruction stream.
Last two steps should be performed atomically.

4. Real-Time Clock in Xscale

Embedded Systems, KAIST 26

Operation
Provides a general-purpose real-time reference for your design.

Set to be a 1 Hz output and is utilized as a system time keeper.
Alarm feature that enables an interrupt or a wake up event when the
RTC output clock increments to a pre-set value.

The RTC Counter register (RCNR)
initialized to zero after a hardware reset or a watchdog reset.
a free running counter that starts incrementing the count value after
the deassertion of reset.
The counter is incremented one 32kHz cycle after the rising edge of
the Hz clock.

Since the high phase of the 1 Hz clock is one 32kHz cycle wide, it
appears to increment on the falling edge of the 1 Hz clock.

Set this counter to the desired value. The value of the counter is
unaffected by transitions into and out of Sleep or Idle mode.

Real-Time Clock in Xscale (II)

Embedded Systems, KAIST 27

Alarm function
RTC Alarm register (RTAR)

may be programmed with a value that is compared against the RCNR.
One 32-kHz cycle after each rising edge of the HZ clock, the counter
is incremented and then compared to the RTAR.
If the values match, and the enable bit is set, then the RTC Status
register (RTSR) alarm match bit (RTSR[AL]) is set.
This status bit is also routed to the interrupt controller and may be
unmasked in the interrupt controller to generate a processor
interrupt.

The HZ clock
generated by dividing one of two selectable clock sources

The first source: the output of the 3.6864 MHz crystal oscillator
further divided by 112 to approximately 32.914 kHz.
The other source: the optional 32.768 kHz crystal oscillator output
itself.

5. OS Timer in Xscale

Embedded Systems, KAIST 28

Operating System (OS) Timer
The processor contains a 32-bit OS timer that is clocked by the 3.6864
MHz oscillator.
The Operating System Count register (OSCR) is a free running up-
counter.
The OS timer also contains four 32-bit match registers (OSMR3, OSMR2,
OSMR1, OSMR0).
Developers can read and write to each register. When the value in the
OSCR is equal to the value within any of the match registers, and the
interrupt enable bit is set, the corresponding bit in the OSSR is set.
These bits are also routed to the interrupt controller where they can be
programmed to cause an interrupt.
OSMR3 also serves as a watchdog match register that resets the
processor when a match occurs provided the OS Timer Watchdog Match
Enable Register (OWER) is set.

OS Timer (II)

Embedded Systems, KAIST 29

Watchdog Timer Operation
The OSMR3 can also be used as a watchdog compare register, enabled
by setting OWER[0].
When a compare against this register occurs and the watchdog is
enabled, reset is applied to the processor and most internal states are
cleared.

Internal reset is asserted for 256 processor clocks and then removed,
allowing the processor to boot.

Watchdog procedure suggested
1. The current value of the counter is read.
2. An offset is then added to the read value. This offset corresponds to the

amount of time before the next time-out (care must be taken to account
for counter wraparound).

3. The updated value is written back to OSMR3.
The OS code must repeat this procedure periodically before each match
occurs. If a match occurs, the OS timer asserts a reset to the processor.

OS Timer (III)

Embedded Systems, KAIST 30

OS Timer Register Definitions
OS Timer Match Register 0-3 (OSMRx)

Compared against the OSCR after every rising edge of the 3.6864
MHz clock.
All four registers are identical, except for location.

OS Timer Interrupt Enable Register (OIER)
contains four enable bits that indicate whether a match between one
of the match registers and the OS timer counter sets a status bit in
the OSSR.

E3: Interrupt enable channel 3.
1 – A match between OSMR3 and the OS Timer asserts OSSR[M3].

OS Timer Watchdog Match Enable Register (OWER)
contains a single control bit (bit 0) that enables the watchdog
function.
can only be cleared by one of the reset functions such as, hardware
reset, sleep reset, watchdog reset, and GPIO reset.

WME Watchdog Match Enable
1 – OSMR3 match causes a reset of the processor.

OS Timer (IV)

Embedded Systems, KAIST 31

OS Timer Register Definitions (II)
OS Timer Count Register (OSCR)

32-bit counter that increments on rising edges of the 3.6864 MHz
clock.
This counter can be read or written at any time.

OS Timer Status Register (OSSR)
contains status bits that indicate a match has occurred between any
of the four match registers and the OSCR.
These bits are set when the match event occurs (following the rising
edge of the 3.6864 MHz clock) and the corresponding interrupt
enable bit is set in the OIER.
The OSSR bits are cleared by writing a one to the proper bit position.

M3 Match status channel 3. If OIER[3] is set then
0 – OSMR[3] has NOT matched the OS timer counter since last being
cleared.
1 – OSMR[3] has matched the OS timer counter.

References

Embedded Systems, KAIST 32

Interrupts and exceptions
Steve Heath, “Embedded Systems Design”, Newnes, 2003.

Interrupt Controller, Real-Time clock, OS timer in Xscale
PXA255 Developer’s Manual, http://developer.intel.com.

Exceptions in ARM
Steve Furber, “ARM system-on-chip architecture”, Addison
Wesley, 2000.

http://developer.intel.com/
http://developer.intel.com/

	Embedded SystemsCh 9Interrupt and Timer
	Overview
	1. Interrupts and Exceptions
	Interrupts and Exceptions (II)
	Interrupts and Exceptions (III)
	Interrupts and Exceptions (IV)
	Interrupts and Exceptions (V)
	Interrupts and Exceptions (VI)
	Interrupts and Exceptions (VII)
	Interrupts and Exceptions (VIII)
	Interrupts and Exceptions (IX)
	2. Interrupts in Xscale
	Interrupts in Xscale (II)
	Interrupts in Xscale (III)
	Interrupts in Xscale (IV)
	Interrupt in Xscale (V)
	Interrupt in Xscale (VI)
	Interrupt in Xscale (VII)
	Interrupt in Xscale (VIII)
	3. Exceptions in ARM
	Exceptions in ARM (II)
	Exceptions in ARM (III)
	Exceptions in ARM (IV)
	Exceptions in ARM (V)
	Exceptions in ARM (VI)
	4. Real-Time Clock in Xscale
	Real-Time Clock in Xscale (II)
	5. OS Timer in Xscale
	OS Timer (II)
	OS Timer (III)
	OS Timer (IV)
	References

