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Information Theoretic Sensor Fusion

! Heterogenous sensors contain 
complementary information.

! Information from one sensor can 
be used to disambiguate mixed 
signals from another.

! Signal-level fusion faces 
challenges, including
! A lack of accurate joint statistical 

models
! high-dimensionality 
! mixed sampling rates



Information Theoretic Sensor Fusion

! How do we relate signals from 
heterogenous sensors to each 
other?
! Complex temporal dependency within 

and between signals and modalities
! Complex joint statistical properties
! High dimensionality

! Can we learn and/or exploit 
structure in the overlapping field of 
regard of such sensors?
! Recovering relative geometry



An approach for signal level fusion

Using principles from information theory and 
nonparametric statistics we

! project high dimensional data onto a maximally 
informative, low-dimensional subspace. 

! model the complex stochastic relationships between 
the signals using a nonparametric density estimator 
in the subspace. 

! use learned densities to process across signal 
modalities.



Why invoke information theory?

Log Likelihood vs. Nonparametric Entropy
! Given N samples {xj} drawn from some p(x)
! Likelihood under some parameterized model:

! Nonparametric Entropy using WLL estimator
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Differential entropy vs. moments?

! Densities are a complete uncertainty model
! Moments summarize the uncertainty in terms of the 

“spread” of a density about a central point.
! Appropriate for uni-modal densities.

! Entropy summarizes the uncertainty in terms of the 
compactness (volume) of  the density.
! Appropriate for densities with complex structure (e.g. multi-

modal)
! The notion of volume is formally defined in terms of 

“typicality”, that is entropy is related to the volume of the 
“typical” set.



Gaussian vs. bi-modal gaussian mixture

122 =+νm 1,0 == σµ

The variance is the same for both densities, but the entropy of the bi-
modal density is lower.
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where...

• Mutual information quantifies the reduction in uncertainty (on average) about 
one random variable achieved by observing another.

• The entropy terms depend on the whether the random variable is discrete or 
continuous.
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MI as a Criterion for Learning/Adaptation

Challenges
! MI as criterion for adaptation is an integral function 

of a probability density (and so is the approximation).
! In general we aren’t given the density, only samples.
Learning Approach
! Use Parzen Density estimator
! Exploit the property that the Uniform density is the 

max entropy density for finite support.



Towards Approximating Entropy
(from Fisher ’97)

! definition of differential entropy

! expand integrand as a 2nd order Taylor series about 
some density q(x).

! where q(x) is some density with “useful” properties
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Approximating Differential Entropy

! Substitute approximation into integral and simplify

! Consequently, maximizing this approximation to 
entropy is equivalent to minimizing the chi-squared 
distance between the density, p, and the expansion 
density, q.
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Expansion about the Uniform Density...

! When q(x) is the uniform density

is (trivially) true for all densities, p(x)

! Consequently, maximizing the approximation to 
entropy is equivalent to minimizing the ISE between 
the estimated density and the uniform density
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Parzen Density Estimator

! Infers a density by convolving a kernel  with the 
data.

! Broader L1 convergence properties than parametric 
approaches.

! Stone ’77 showed universal consistency.
! Does not outperform the parametric approach when 

the “right” parametric model is chosen.
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Exact Evaluation of
Integral Criterion Gradient

Gradient of 
approximation can be 
computed exactly by 
evaluation of N 
functions at N sample 
locations.
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Information Preserving Transformations
Adapt the mapping parameters, α, so as to maximize the information 
about the relevance parameter, θ.

( ),g α�

feature extraction

θ
labeled poses

back projection

PCA reconstruction



Complex temporal structure (Alex Ihler)

! Example from time-series 
modeling – pulsed laser data

! Learn a two dimensional 
statistic (which is a function 
of the past N samples) that 
has high mutual information 
with the next sample

! Low dimensionality does not 
necessarily equate to low 
complexity



Synthesis Examples

Gaussian assumption

1D Learned Statistic

2D Learned Statistic



Audio/Video fusion using MI

• Choose the mapping parameters such that the mutual information 
between the extracted features is maximized (i.e. project onto a
maximally informative subspace.

• Why is this the “right” thing to do (or rather when)?

( , )i vg v α

( , )i ag a α



Independent Cause Model
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Induced dependency amongst causes
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Induced dependency amongst causes
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Joint observations increase complexity
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Suppose a separation of U and V 
exists such that:

then…

Separating Functions
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becomes

Bearing in mind that we still have 
the task of finding a separating 
function (or an approximate one).

Markov Property
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or

Markov Property
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Audio/Video using MI

( , )i vg v α

( , )i ag a α

•By maximizing MI, we are summarizing the common information in the 
measurements, (i.e. which is related to their common cause).
•From the information theory perspective, the joint of the feature variables is a 
proxy for the “observable” part of their common cause.
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Maximally Informative Subspace
Learned Subspace

audio projection

video projection

Find a projection of both the 
video data and the audio data to 
a low-dimensional space such 
that MI is maximized.



Learning the Subspace

{ } ( ) ( )( )
,

ˆ ˆ, arg max , , ,
v a

v u v v a uI f V f U
α α

α α α α=

•The mapping parameters are chosen to maximize the mutual 
information in the low dimensional output space.

•Video localization and audio filter design are inferred as a function 
of the learned weights.



Video Localization of Single Speaker in 
the Presence of Motion Distractors

! Which pixels are “related” to the 
associated audio?

! Joint statistics of video and audio 
modalities are not well modeled by 
parametric forms.

! Slaney and Covell (NIPS ’00) 
demonstrate that canonical correlations 
(a second-order statistical measure) do 
not successfully detect audio/video 
synchrony using spectral representations.

! Classical sensor fusion approaches are 
formulated as joint Bayesian estimation 
problems, which is equivalent to MI in 
the non-parametric case.



Detecting (change) motion is not enough

•Red squares indicate regions with large pixel variance
•Variance image of sequence at left
•Magnitude of MAX MI video projection shown at center
•Inspection of the learned video projection coefficients tells us which pixels are 
associated with the audio signal.



Representation: pixel vs. motion

•Similar result using an optic flow representation [Anandan ’89] of motion in 
the video
•Fusion approach does not explicitly rely on how information is represented in 
data



Video Localization (more examples)



Audio Enhancement

•Left channel

•Right channel

•Wiener (left)

•Wiener (right)

•MI (left)

•MI (right)

In this experiment, regions of the video are selected for enhancement 
(e.g. face detector, manually).



Wiener Filter Comparison

5.6 dB5.7 dB10.5 dB
SPG

(female voice)

9.2 dB8.9 dB10.43 dB
SPG 

(male voice)

Optical Flow-
Periodogram 

Representation

Pixel-
Periodogram 

Representation
Wiener filter



Acquiring correspondences



Acquiring correspondences

Peaks in mapping
coefficients



Acquiring correspondences

Peaks in mapping
coefficients



Extensions

! A basic algorithm has been developed
! Need to incorporate multiple independent 

causes (order estimation)
! Temporal dependency of joint measurements
! Testing on new data sources (e.g. audio, 

seismic, etc.)



Exploiting array structure

! Two sensors observer mixture 
of three signals

! G( ) is unknown and may be 
nonlinear

! Use knowledge of the mixing 
structure to separate signals 
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A Variational Approach to Array Processing 
Accommodating 

Sensor Location Uncertainties
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The Source Localization Problem

! Find source location parameters based on data from 
multiple sensors

! Assumptions for a basic problem:
! Unknown number of narrowband sources in near or far field
! Omnidirectional sensors
! Limited aperture size (" limited Rayleigh resolution) 
! Sensor locations known only approximately
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Variational Approach - Motivation

! View the problem as one of imaging a “source 
density” over the field of regard
! Ill-posed inverse problem
! Cast as an optimization problem and regularize by 

favoring fields with concentrated densities
! Can include optimization over sensor locations
! Analogous to auto-focusing and point-enhanced imaging 

in other array processing problems in which there are 
“phase defects” to be accommodated



Variational Formulation

! : non-quadratic function, e.g.     norm
! Preservation of strong features (source densities)
! Preference of sparse source density field
! Can resolve closely spaced radiating sources

! Sensor locations (boundedly) uncertain:
! Self-calibration capability important

! Potential use in other domains:
! SAR imaging with unknown motion of the objects in the scene
! Robust Passive Sonar in the littoral
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Application in SAR Imaging

Ground truth ProposedConventional 

# Superresolution Scatterer Localization (synthetic data)



Application in SAR Imaging

# Superresolution Scatterer Localization (real data)

Conventional Proposed



Application in SAR Imaging

# Region-Enhanced Imaging

Conventional Proposed



Moving Target Localization in SAR
Conventional Proposed

# Scene contains 6 moving and 2 stationary strong point scatterers



Moving Target Localization in SAR

Detailed 
view

Velocity 
estimates



Summary and Extensions

! Proposed the development of a variational framework for 
passive source localization, robust  to:
! Limitations in data quality and quantity
! Uncertainties in sensor locations

! Extensions:
! Sensors: directional sensitivity, gain/phase uncertainties
! Signals: structured broadband (e.g. harmonics),

unstructured or uncertain broadband
! Medium: attenuating, dispersive, reverberant


