
Estimating Entropy and Divergence of
Sensor Data

Haixiao Cai, Sanjeev Kulkarni, Sergio Verdu
Princeton University

SensorWeb MURI Review Meeting
June 14, 2002

Problem and Motivation

• Many simple, myopic sensors

• Would like to fuse myopic information to
attain more global view of battlefield
scenario

• Need to understand relationships between
sensor outputs

Difficulties and Complications

• Need fast, low-complexity algorithms (but can
exploit temporal information)

• Unknown scene and sensor geometry
• Complex, dynamic environment
• Multiple, widely separated, possibly dynamic

sensors
• Uncalibrated, possibly multi-modal, sensors

(unknown parameters, geometry)
• Noise

A Key Task and Possible Approach
• Correspondence and fusion are

• difficult with many parameters (or nonparametric) and with
nonlinear transformations

• meaningless without common information in data streams

• A key task is to determine how related are the outputs of two
sensors

• A possible approach:
• Determine sensor pairs/groups that are highly related
• Perform correspondence and fusion first with maximally related

sensors
• Incorporate other sensor outputs

A “Distilled” Problem

The Problem: How to estimate the entropy and
divergence of two sources based only on one
realization from each source ?

Assumption: Both are finite-alphabet, finite-
memory, stationary sources.

Our goal: Want good estimates, fast
convergence, and reasonable computational
complexity.

Definitions

Entropy and Divergence rates are defined as follows:

.
)|(
)|(log)|()(

]
)(
)([log1lim)||(

.
)|(

1log)|()(

]
)(

1[log1lim)(

∑ ∑

∑ ∑

∈ ∈

∞>−

∈ ∈

∞>−

=

=

=

=

Ss a x

z
zz

n
x

n
z

nxz

Ss a z
zz

n
z

nz

sap
saqsaqsq

zp
zqE

n
pqD

saq
saqsq

zq
E

n
qH

χ

χ

Possible Approaches and Previous
Work
• Model Based: Assume model to get empirical distribution.

Then plug-in to formulas.
• Universal Algorithms: Use universal compression algorithm or

related methods to estimate entropy. E.g., can use Lempel-Ziv
string matching method inspired by LZ data compression
algorithm (Wyner, Ziv ’89, Kontoyiannis et al. ’94,’96,’98, Quas
’95, Shields ’92).
Ln =1 + length of the longest prefix that recurs

e.g., for “abaabaaa”, L8=5.
• Very little previous work on divergence estimation (Ziv, Merhav

’93)

n
n L

nH 2logˆ =

Weaknesses and Overcoming Them

• Model-based methods need to know order of model
and are not universal.

• Existing universal methods (e.g., LZ-based methods)
converge very slowly.

• Can we retain advantages of both?

• Recent interest in Burrows-Wheeler Transform (block
sorting) for data compression (Burrows, Wheeler ’94)

• Can this be adapted for entropy and divergence
estimation?

Burrows-Wheeler Block Sorting
Transform
1. Get every shift of the input sequence.
2. Sort them alphabetically.
3. Output the last column of the sorted table, as well

as the position of the original sequence.

Reversible transform.
Can be implemented in O(n) time/space complexity.
Sorts input sequence according to context.
Output is close to a piecewise i.i.d. distribution
(Effros, Visweswariah, Kulkarni, Verdu ’02).

BWT: Example

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

anana$ b
ana$ba n
a$bana n
banana$
nana$b a
na$ban a
$banan a

b
n
n
$
a
a
a

sort

input

cyclic
shifts

 output

 EOF
symbol

 sorted table output:

Entropy Estimation – Basic Idea

The BWT sorts the sequence according to context, and the
output is close to piecewise i.i.d.

abbababa abbabbabbbababbbabb baaababaabaaBWT
output

piecewise stationary memoryless distribution

segment # 1 2 3

estimate probabilities within each segment

transitions

Entropy Estimation via BWT

1. Reverse original sequence zn .
2. Run BWT on reversed sequence.
3. Divide BWT output into segments, according to

transitions of distribution.
4. Estimate letter probabilities in each i.i.d. segment.
5. Combine estimates in each segment (average log

of probability of each segment) to calculate
probability of zn and in turn the entropy.

Entropy Estimation via BWT: cont.

Block diagram of the entropy estimator

REVERSER BWT SEGMENTATION

ESTIMATION

ESTIMATION

ESTIMATION

AVERAGING
z z ' Hz

... ...

BWT(z ')

Divergence Estimation – Basic idea

Recall,

Second term is just entropy of z.
First term (cross term) is probability of z, but
according to distribution for x.
Key idea to estimate cross term is joint BWT
of both x and z.









−=

∞>−)(
1log

)(
1log1lim)||(n

z
n

x
n zqzpn

pqD

Estimation of Cross Term

Joint BWT of x and z:
1. Concatenate x and z, adding ‘$’ to the end of each.
2. Sort the table of cyclic shifts. Note whether each letter

comes from x or from z during the BWT sorting.
3. Output the last column.
This gather letters with same context from both x
and z together.
Segment the joint BWT output according to x.
Compute probability of z using probabilities
estimated according to x.

Estimation of Cross Term – continued

abBAbBAABba BBaABbBbAbBBb bAaABAbAabA

segment # 1 2 3

estimate px(A), px(B) within each segment

BWT(z'+x')

 BA BAAB BB AB B A BB A ABA A A
 ab b ba a b b b b b a b ab letters from z

letters from x

Divergence Estimation via BWT
1. Estimate entropy Hz = –1/n log qz (zn) .
2. Estimate the cross term –1/n log px (zn) .
3. Subtract the entropy term from the cross term.

Block diagram of the divergence estimator

REVERSER SEGMENTATION
 according to z

ESTIMATION

ESTIMATION

ESTIMATION

AVERAGING
z z ' Hz

... ...

REVERSER
Joint
BWT

SEGMENTATION
 according to x

ESTIMATION

ESTIMATION

ESTIMATION

AVERAGING
x

(zx)'
... ...

+
+

-
D(z||x)

Approaches to Segmentation

Uniform segmentation: divide the BWT
output sequence into equal-length segments.

Adaptive segmentation: make a new
segment only when we detect a transition.
The number and length of segments are
adapted to the source.

Uniform Segmentation
Divide the sequence (of length n) into equal-length segments of
length w(n). Want those segments containing transitions to be
negligible, but don’t want too many segments.

aabbb aabbababba abbababbab babbbbabab bababaa BWT(z')

segment# j j+1 j+2 j+3

w(n) w(n) w(n)

 q (j,a)=0.5
 q (j,b)=0.5z

z z

z

q (j+1,a)=0.4
q (j+1,b)=0.6

z

z

q (j+2,a)=0.3
q (j+2,b)=0.7

Adaptive Segmentation

Uniform segmentation ends up with many more
segments than the actual number of states.
Instead of using equal-length segments, estimate
positions of transitions, and make new segment only
when we detect a transition.
Two-level blocks are introduced. In level-1 (with block
length k1), roughly locate the positions. In level-0
(with block length k0), refine our estimate of the
positions.

Experimental Results

Have tested algorithm on simulated date (randomly
generated binary tree sources).
Compared new algorithm with LZ-based methods
for both entropy and divergence estimation.
Compared new algorithm with empirical distribution
plug-in scheme for both entropy and divergence.
Work with text files in progress, and sensor data
forthcoming.

New algorithm vs. LZ
– Entropy Estimator

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0.45

0.5

0.55

0.6
 D(x||z)=0.3131 Hx=0.5697

datasize n

H
x

new
LZ
CTW

Tree Source, D=11, S=20

New algorithm vs. LZ
– Divergence Estimator

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0.34

0.36

0.38

0.4

0.42

0.44

0.46
 D(z||x)=0.446 Hz=0.709

datasize n

D
(z

||x
)

new
LZ

Tree Sources, D=7, S=75

New algorithm vs. Plug-in
– Entropy Estimator

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62
 D(z||x)=0.3131 Hz=0.5697

datasize n

H
z

adaptive
simple
9th order
10th order
11th order

H(Z)

Tree Source, D=11, S=20

New algorithm vs. Plug-in
– Divergence Estimator

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33
 D(x||z)=0.3131 Hx=0.5697

datasize n

D
(x

||z
)

adaptive
simple
9th order
10th order
11th order

D(x||z)

Tree Sources, D=11, S=20

Experimental Results

New algorithm converges much faster than
LZ-based algorithm.
Choosing “right order” is critical for the
empirical distribution plug-in scheme.
New algorithm has an intrinsic advantage by
not assuming . Also, doesn’t assume
prior knowledge about memory length or
number of states.

DS χ=

Preliminary Thoughts on Estimating
Mutual Information

• Mutual information tells how much one
information one source provides about
another.

• Can estimate mutual information via
entropy or divergence:

• I(X;Y) = H(X) - H(X|Y) = H(X) + H(Y) – H(X,Y).

• I(X;Y) = D(p(x,y) || p(x)*p(y)).

• Alphabet size increases complexity.

Summary

A new entropy and divergence estimator based on
BWT (block sorting).
Doesn’t require knowledge of distribution or
parameters of the sources.
Efficient algorithm, good estimates, fast
convergence.
Significantly outperforms other algorithms tested.
Expect this to be useful in a wide range of
applications --- specifically, a key component in
general correspondence and fusion algorithms.

Future Work

Fine-tune and improve algorithm (e.g.,
segmentation procedure).
Further analysis of performance.
Extensions (e.g., continuous source, non-
stationarity).
Assess performance on actual sensor data.
Implement algorithms for mutual information.
Integrate as a component of general
correspondence and fusion algorithms.

	Estimating Entropy and Divergence of Sensor Data
	Problem and Motivation
	Difficulties and Complications
	A Key Task and Possible Approach
	A “Distilled” Problem
	Definitions
	Possible Approaches and Previous Work
	Weaknesses and Overcoming Them
	Burrows-Wheeler Block Sorting Transform
	BWT: Example
	Entropy Estimation – Basic Idea
	Entropy Estimation via BWT
	Entropy Estimation via BWT: cont.
	Divergence Estimation – Basic idea
	Estimation of Cross Term
	Estimation of Cross Term – continued
	Divergence Estimation via BWT
	Approaches to Segmentation
	Uniform Segmentation
	Adaptive Segmentation
	Experimental Results
	New algorithm vs. LZ – Entropy Estimator
	New algorithm vs. LZ – Divergence Estimator
	New algorithm vs. Plug-in – Entropy Estimator
	New algorithm vs. Plug-in – Divergence Estimator
	Experimental Results
	Preliminary Thoughts on Estimating Mutual Information
	Summary
	Future Work
	Backup Slides
	Previous work
	Previous work: cont.
	Previous work: cont.
	BWT: Example
	Entropy Estimation via BWT: cont.
	Segmentation Procedure in Divergence Estimation
	Divergence Estimation via BWT cont.
	Divergence Estimation via BWT cont.
	Adaptive Segmentation: cont.
	Adaptive Segmentation: cont.
	Adaptive Segmentation: cont.

