
O
ver the next few decades, two emerg-
ing technologies—microfabrication
and cellular engineering—will make it
possible to assemble systems incorpo-
rating myriads of information-
processing units at almost no cost,

provided all units need not work correctly and
that there is no need to manufacture precise geo-
metrical arrangements among them. The shift to
this technology will precipitate fundamental
changes in methods for constructing and program-
ming computers, and in our view computation
itself.

Microelectronic mechanical components have
become so inexpensive to manufacture we can antic-
ipate integrating logic circuits, microsensors, actua-
tors, and communications devices on the same chip
to produce particles that could be mixed with bulk
materials, such as paints, gels, and concrete. Imagine
coating bridges and buildings with smart paint that
senses and reports on traffic and wind loads and mon-
itors structural integrity. A smart-paint coating on a
wall could sense vibrations, monitor the premises for
intruders, and cancel noise.

Even more striking is the amazing progress in
understanding the biochemical mechanisms in indi-
vidual cells, promising that we’ll be able to harness
these mechanisms to construct digital logic circuits.

AMORPHOUS
For coherent behavior from vast numbers of
unreliable microsensors, actuators, and communication
devices interconnected in unknown ways, apply the
lessons of cellular cooperation in biological organisms.

�Harold Abelson, Don Allen, Daniel Coore, Chris Hanson,
Erik Rauch, Gerald Jay Sussman, and Ron Weiss

74 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

COMMUNICATIONS OF THE ACM May 2000/Vol. 43, No. 5 75

S COMPUTING

George Homsy, Thomas F. Knight, Jr., Radhika Nagpal,

Imagine a discipline of cellular engineering that tai-
lor-makes biological cells to function as sensors and
actuators, as programmable delivery vehicles for
pharmaceuticals, or as chemical factories for the
assembly of nanoscale structures. The ability to fab-
ricate such systems seems within our reach, even if it
is not yet within our grasp.

Yet fabrication is only part of the story. Digital
computers have always been constructed to behave as
precise arrangements of reliable parts, and almost all
techniques for organizing computations depend on
this precision and reliability. We can envision pro-
ducing vast quantities of individual computing ele-
ments—whether microfabricated particles or
engineered cells—but we have few ideas for pro-
gramming them effectively. The opportunity to
exploit these new technologies poses a broad con-
ceptual challenge—the challenge of amorphous com-
puting. How can prespecified, coherent behavior be
engineered from the cooperation of vast numbers of
unreliable parts interconnected in unknown, irregu-
lar, and time-varying ways?

One critical task is to identify appropriate orga-
nizing principles and programming methodologies
for controlling amorphous systems. The growth of
form in biological organisms demonstrates that well-
defined shapes and functional structures can develop
through the interaction of cells under the control of
a genetic program, even though the precise arrange-
ments and numbers of the individual cells are vari-
able. Accordingly, we discuss some ideas for
controlling amorphous systems, especially the hints
from biology. We turn to biology not just as a
metaphor, but as an actual implementation technol-
ogy for amorphous systems by means of “cellular
computing,” which constructs logic circuits within
living cells.

Programming Paradigms for
Amorphous Systems
An amorphous computing medium is a system of
irregularly placed, asynchronous, locally interacting
computing elements. We can model this medium as
a collection of “computational particles” sprinkled
irregularly on a surface or mixed throughout a vol-
ume. The particles are possibly faulty, sensitive to
the environment, and may produce actions. In gen-
eral, the individual particles may be mobile, but the

initial programming explorations described here do
not address this possibility.

Each particle has modest computing power and a
modest amount of memory. The particles are not syn-
chronized, although we assume they compute at sim-
ilar speeds, since they are all fabricated by the same
process. The particles are all programmed identically,
although each one has means for storing local state
and for generating random numbers. In general, the
particles do not have any a priori knowledge of their
positions or orientations.

Figure 1. A program in the growing-point language.

(define-growing-point (make-red-branch length)

 (material red-stuff)

 (size 5)

 (tropism (and (away-from red-pheromone)

 (and (keep-constant pheromone-1)

 (keep-constant pheromone-2))))

 (avoids green-pheromone)

 (actions

 (secrete 2 red-pheromone)

 (when ((< length 1)

 (terminate))

 (default

 (propagate (- length 1))))))

Each particle can communicate with a few nearby
neighbors. In amorphous systems of microfabricated
components, the particles may communicate via
short-distance radio, and bioengineered cells may
communicate by chemical means. For our purposes
here, we assume there is some communication radius
r that is large compared to the size of individual parti-
cles and small compared to the size of the entire area
or volume, and that two particles can communicate if
they are within distance r.

We assume that the number of particles is very
large. Thus, the entire amorphous medium can be
regarded as a massively parallel computing system, and
previous investigations into massively parallel comput-
ing, such as research in cellular automata, is a source of
ideas for dealing with amorphous systems. Amor-
phous computing presents a greater challenge than
cellular automata, however, because its mechanisms
must be independent of the detailed configuration
and reliability of the individual particles. For example,
smart paint should be able to determine geometric

properties of the surface it coats—without initial
knowledge of the positions of the paint’s computa-
tional particles.

Another source of ideas may be research into self-
organizing systems exhibiting how coherent behaviors
of large-scale systems can “emerge” from the purely
local interactions of individual particles. Amorphous
computing might exploit similar phenomena, but it is
not our goal to study the principles of self-organiza-
tion per se. As engineers, we have to learn to construct
systems so they end up organized to behave as we a
priori intend, not merely as they happen to evolve.

Wave propagation. To get a sense of what it would
be like to program an amorphous system, consider a
simple process of wave propagation. An initial
“anchor” particle, chosen by a cue from the environ-
ment or by generating a random value, broadcasts a
message to each of its neighbors. These neighbors
propagate the message to their neighbors, and so on,
to create a diffusion wave that spreads throughout the
system. The message can contain a hop count that
each particle can store and increment before rebroad-
casting, ignoring any subsequent higher values to pre-
vent the wave from propagating backward.

The hop counts provide estimates of distance from
the anchor; a point reached in n steps is roughly dis-

tance nr away. The quality of this estimate depends on
the distribution of the particles. Such relations have
been studied extensively in investigations of packet-
radio networks [6]. For particles on a surface, one can
produce 2D coordinate systems by propagating waves
from two anchors. Using three anchors establishes a tri-
angular coordinate system with better accuracy, espe-
cially when augmented by smoothing techniques [9].

Wave propagation with hop counts is evocative of
the gradients formed by chemical diffusion believed to
play a role in biological pattern formation. Corre-
spondingly, we can attempt to organize amorphous
processes by mimicking gradient phenomena observed
in biology.

As an example, we can use diffusion waves to pro-
duce regions of controlled size, simply by having the
particles relay the message if the hop count is below a
designated bound. Once a region is generated in this
way, we can use it to control the growth of other
regions. For instance, two particles A and B might
each produce a diffusion wave, but the wave from B

could be relayed only by particles that have not seen
the wave from A. Drawing on a biological metaphor,
we might interpret this phenomena as saying that A
generates a wave that “inhibits the growth” that has
started from B. In a slightly more elaborate program,
the B-wave might be relayed only by the particle
located in each neighborhood closest to A (as mea-
sured by the A-wave). Our biological metaphor might
interpret this situation by explaining that the region
growing from B has a “tropism” attracting it toward A.

These diffusion wave mechanisms are well-
matched to amorphous computing, because the gross
phenomena of growth, inhibition, and tropism are
insensitive to the precise arrangement of the individ-
ual particles, as long as the distribution is reasonably
dense. In addition, if individual particles do not func-
tion or stop broadcasting, the result does not change
much, so long as there are sufficiently many particles.

From wave propagation to pattern formation.
Based on this kind of cartoon caricature of biological
development, the author Coore developed a program-
ming language called the growing-point language
(GPL) that enables programmers to specify complex
patterns, such as the interconnect topology of an elec-
tronic circuit [2]. The specification is compiled into a
state machine for the computational particles in an

76 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

> We turn to biology not just as a metaphor, but as an actual

implementation technology for amorphous systems by means of

“cellular computing.”

amorphous medium. All of the particles have the same
program. As a result of the program, the particles “dif-
ferentiate” into components of the pattern.

Coore’s language represents processes in terms of
the botanical metaphor of “growing points.” A grow-
ing point is an activity of a group of neighboring com-
putational particles that can be propagated to an
overlapping neighborhood. Growing points can split,
die off, or merge with other growing points. As a grow-
ing point passes through a neighborhood, it may mod-
ify the states of the particles it visits. We can interpret
this state modification as the growing point laying
down a particular material as it passes. The growing
point may be sensitive to particular diffused messages,
and in propagating itself, it may exhibit a tropism
toward or away from a source, or move in a way that
attempts to keep constant the “concentration” of some
diffused message. Particles representing particular
materials may “secrete” appropriate diffusible messages
that attract or repel specific growing points.

Figure 1 shows a fragment of a program written in
GPL; the program defines a growing point process

called make-red-branch
that takes one parameter
called length. This grow-
ing point “grows” material
called red-stuff in a
band of size 5. It causes
each particle it moves
through to set a state bit
that identifies the particle
as red-stuff and also
causes the particle to prop-
agate a wave of extent 5
hops that similarly converts
nearby particles to be red-
stuff. The growing point
moves according to a tro-
pism that directs it away
from higher concentrations
of red-pheromone in
such a way that the concen-
trations of pheromone-1
and pheromone-2 are kept
constant, so as to avoid any
source of green-
pheromone. All particles
that are red-stuff secrete
red-pheromone; conse-
quently, the growing point
tends to move away from
the material it has already
laid down. The value of the
length parameter deter-

mines how many steps the growing point moves.
Notice how this language encourages the program-

mer to think in terms of abstract entities, like growing
points and pheromones. The GPL compiler translates
these high-level programs into an identical set of direc-
tives for each of the individual computational particles.
The directives are supported by the GPL runtime sys-
tem running on each particle. In effect, the growing
point abstraction provides a serial conceptualization of
the underlying parallel computation.

Figure 2(a) shows the first stages of a pattern being
generated by a program in GPL. For simplicity, we
assume the horizontal bands at the top and bottom
were generated earlier, and that an initial growing
point is at the left. Growth proceeds, following a tro-
pism that tries to stay equidistant from the top and
bottom bands. After a short while, the initial growing
point splits in two; one branch of growth is attracted
toward the top, and one is attracted toward the bot-
tom. Figure 2(b) shows the process somewhat further
along; the two branches, which are repelled by short-
range pheromones secreted by the top and bottom

COMMUNICATIONS OF THE ACM May 2000/Vol. 43, No. 5 77

Figure 2. Evolution of a complex design—the connection graph of
a chain of CMOS inverters—being generated by a program in Coore’s

growing-point language. (a) An initial “poly” growth divides to form two
branches growing toward “Vdd” and “ground.” (b) The branches
start moving horizontally and sprout pieces of “diffusion.” (c) The

completed chain of inverters.

a. b.

c.

bands, start moving horizontally. They also change the
kind of material they lay down.

Figure 2(c) shows the process evolved even further,
producing an elaborate shape. That shape is the lay-
out of a chain of complementary metal-oxide semi-
conductor (CMOS) inverters, where the different
colored regions represent structures in the various lay-
ers of standard CMOS technology: metal, polysili-
con, and diffusion. The program specifying the shape
is only a few paragraphs long; the resulting state
machine for the individual particles requires only
about 20 states. Coore has demonstrated that any pre-
specified planar graph can be generated—up to con-
nection topology—by an amorphous computer
under the control of a growing-point program, pro-
vided the distribution of particles is sufficiently dense.

Rules and markers. GPL is formulated in terms of
abstractions that ultimately must be implemented by
processes in the individual computational particles,
which we assume are all programmed identically. The
author Weiss has developed a remarkably convenient
and simple language for programming the particles
[12]. In Weiss’s model, the program to be executed by
each particle is constructed as a set of independent
rules. The state of each particle includes a set of binary
markers; rules are enabled by Boolean combinations of
the markers. The enabled rules are triggered by receipt
of labeled messages from neighboring particles. A rule
may set or clear various markers; it may also propagate
new messages. Messages contain counts that deter-
mine how far they diffuse, and markers have lifespans
that determine how long their values persist. Underly-

ing this model is a runtime system that automatically
propagates messages and manages the lifespans of
markers, so the programmer need not deal with these
operations explicitly.

Figure 3 shows Weiss’s system generating a pattern
of alternate bands of red and blue in a “tube” of parti-
cles that are initially distinguished by having a tube
marker set in them. Here is a fragment of a program
that generates this pattern, showing five rules:

((make-seg seg-type)
(and Tube (not red) (not blue))
((set seg-type)
(send created 3)))

(created (or red blue) ((set Waiting
10)))

(((make-seg *) 0) Tube ((set Bottom)))

((Waiting 0)
(and Bottom red)
((send (make-seg blue) 3)))

((Waiting 0)
(and Bottom blue)
((send (make-seg red) 3)))

The first rule describes the reaction of a particle to
receiving a message labeled make-seg specifying a
seg-type (which is red or blue). If the particle has
its tube marker set, and does not have its redmarker

78 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

Figure 3. A pattern of alternating bands produced by marker propagation with the
aid of Weiss’s programming model.

or blue marker set, it sets the bit for the specified
seg-type and sends a created message that propa-
gates for three hops. The second rule says that when a
particle receives a created message, and it has the
red marker or the blue marker set, it turns on its
waiting marker with a lifetime of 10. The third rule
says that any particle whose tube marker is set, that
then receives any make-segmessage with a hop count
of zero, should set its bottom marker. The fourth rule
says that when the lifetime of the waiting marker
runs out, and the particle has both the red and bot-
tom markers set, the particle sends a (make-seg
blue) message, which propagates for three hops. The
fifth rule analogously causes blue particles to send
red messages. The result is alternating red and blue
bands along the length of the tube.

More metaphors from biology. These sketches barely
hint at the new primitives and organizational princi-
ples required for effective control of amorphous com-
puting systems. Tapping the use of metaphors from
biology has only barely begun.

A particularly fruitful source of inspiration from
biology should emerge from the observation that even
the most basic morphogenetic processes, such as gas-
trulation in embryo development, involve cell migra-
tion and deliberate changes in cell shapes. Figure 4
shows some evocative simulations by the author Nag-
pal, based on mechanical models of epithelial cells
[10]. In Nagpal’s model, each individual cell preserves
its volume but has actuators (in this case, fibers) it can
stretch or relax to change cell shape; it can also react to
the stresses in its neighbors. The entire collection of
cells bounds a fluid-filled cavity constrained to pre-
serve volume as cell shapes change. The figure shows
how different shapes and behaviors (such as elongation
and invagination) appear as the result of changes by

individual cells. A language of shapes, analagous to
GPL, could allow programmers to generate prespeci-
fied macroscopic shapes in amorphous media by pre-
scribing local shapes in individual particles.

Looking to biology also indicates that progress in
amorphous computing may demand new approaches
to fault tolerance. Traditionally, a system architect
seeks to obtain correct results despite unreliable parts
by introducing redundancy to detect errors and substi-
tute for bad parts.1 But in the amorphous regime, get-
ting the right answer may be the wrong idea; it seems
awkward to describe such mechanisms as embryonic
development as producing a “right” organism by cor-
recting bad parts and broken communications. Rather,
the fundamental question is how to abstractly struc-
ture systems so we get acceptable answers, with high

probability, even in the face of unreliability.
Physics and conservative systems. Physics, as well as

biology, can be a source of new metaphors for amor-
phous computing. The mechanisms just discussed are
based on a “chemical diffusion” model. Chemical dif-
fusion and other dissipative processes, such as heat dif-
fusion, are natural candidates for simulation in
amorphous media, because dissipation loses informa-
tion, erasing microscale errors in computation. In con-
trast, the fundamental processes in the physical world
are conservative. Simulating conservative processes,
such as those characterized by the wave equation, is
much more difficult, because conservative (and espe-
cially reversible) processes never forget the error

COMMUNICATIONS OF THE ACM May 2000/Vol. 43, No. 5 79

Figure 4. Control of shape changes in a ring of cells, based on the mechanical cell models of [10].
Each cell has a simple programmed behavior and reacts to stresses in its neighbors.

1A compelling demonstration of this approach is the Hewlett-Packard Laboratories’
Teramac, a massively parallel computer constructed from defective chips; it reconfig-
ures itself and its communication paths to avoid the broken parts and compensate
for irregular interconnections [5]. Although Teramac is built from conventional
chips, its designers view it as a prototype architecture for designing nanoscale com-
puters that would be assembled by chemical processes in which a significant fraction
of the parts might be defective.

accrued. It is an especially challenging task to formu-
late processes manifesting exact conservation laws in
such a way that imperfection in the implementation
does not impair the exact conservation.

One approach, investigated by the author Rauch, is
to simulate processes in terms of explicit discrete com-
putational tokens of the conserved quantities [11].
With such a scheme we can guarantee global conser-
vation by formulating the process in terms of local
exchanges of the tokens. Conservation laws then
emerge globally as consequences of the local
exchanges. This scheme is essentially the program
advocated by Donald Greenspan for making “particle
models” of physical systems [4].

The use of discrete tokens to represent conserved
quantities works only if we guarantee the tokens are
not lost or duplicated if the communications network
is imperfect or if the computational particles fail. One
idea is to represent our tokens in a redundant distrib-
uted form. In the spirit of amorphous computing, we
should be prepared to use profligate amounts of local
computation to compensate for the unreliability of the
individual elements, but the details of how to generate
conservation robustly remain an important challenge.

Cellular Computing
A major impetus for the study of amorphous com-
puting is that the ability to program amorphous sys-
tems would greatly expand the set of physical
substrates available to support information process-
ing. One striking possibility is that we could create a
programming technology based on living cells. Cells
are isolated controlled environments housing com-
plex chemical reactions. Cells also reproduce them-
selves, allowing creation of many copies with little
manufacturing effort. The vision of cellular comput-
ing is to harness chemical mechanisms to organize
and control biological processes, just as we use elec-

trical mechanisms to control electrical
processes. The ability to control cellular
function will provide important capabilities
in computation, materials manufacturing,
sensing, effecting, and fabrication at the
molecular scale.

The authors Sussman and Knight have
proposed a biochemically plausible approach
to constructing digital-logic signals and gates
of significant complexity within living cells
[7]. This approach relies on co-opting exist-
ing biochemical machinery found naturally
within cells as a basis for implementing digi-
tal logic. The “signals” in this logic system are
represented by concentrations of certain
DNA-binding proteins.2

The essential idea of cellular computing is to adopt
the same strategy as is used in electrical engineering,
where engineers create “digital abstractions” permit-
ting the design of systems insensitive to variations in
signal levels. The key to obtaining a digital abstraction
is the existence of an inverting amplifier. This inverter
must produce adequate noise margins, or ranges where
signal variations in the inputs are not significant to the
next stage in computation. Producing adequate noise
margins requires an amplifier that is nonlinear and
whose average gain is greater than unity.

To see how to construct such an amplifier in the
cellular context, consider an “output” protein Z and
an “input” protein A serving as a repressor for Z. A cel-
lular computing “inverter” can be implemented in
DNA as a genetic unit consisting of an operator (a
binding site for A), a promoter (a site on the DNA at
which RNA polymerase binds to start transcription),
and a structural gene coding for production of Z.

In order for Z to be produced, an RNA polymerase
has to bind to the promoter site and transcribe the
structural gene into messenger RNA. If a molecule of
A binds to the operator site, the A molecule prevents
the docking of the RNA polymerase to the promoter
site, thus preventing transcription of the gene. Assum-
ing that proteins are scavenged and have a finite life-
time, the concentration of Z varies inversely with the
concentration of A (see Figure 5).

The gain of this “inverter” can be increased by
arranging for multiple copies of the structural gene to
be controlled by a single operator. The required non-
linearity can be obtained by using multimer binding

80 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

Figure 5. The two idealized cases for a biological
inverter. If input repressor is absent, RNA polymerase

transcribes the gene for the output protein and
enables its synthesis. If input repressor is present, no

output protein is synthesized.

2Bacterial cells usually contain only a small number of molecules of any particular
DNA-binding protein; this small number results in a degree of stochastic behavior in
bacteria. In natural environments, this stochastic behavior provides a survival advan-
tage by increasing the apparent diversity of a population [8]. For engineered systems,
however, we would like the behavior to be as predictable as possible; this requires
increasing the concentrations of the signaling proteins.

proteins, or proteins constructed from several subunits
that must come together to bind to the DNA.

Given the ability to implement inverters in cells,
arbitrary logic gates can then be realized as combina-
tions of inverters. For example, the NAND logic func-
tion can be implemented as two inverters with
different input repressors but the same output protein;
the output is produced unless inhibited by both
inputs. More complex components, such as registers
that store state, can be constructed similarly, just as in
standard electrical logic design [12]. One difference is
that, rather than using clocked circuits, cellular logic
circuits are likely to be asynchronous and level-based
rather than edge-based, because the signal propaga-
tion, based on diffusion of proteins, makes it difficult
to achieve synchronization.

In addition to realizations of digital logic, cellular
gates could also code for enzymes that induce some
other action within the cell, such as motion, illumina-
tion, enzymatic catalysis, even cell death. Similarly, an
input to a cellular logic gate could consist, not of the
output of another logic gate, but of a sensor that cre-
ates or modifies a DNA-binding protein in response to
illumination, a chemical in the environment, or the
concentration of specific intracellular chemicals.

A research agenda for cellular computing. In princi-
ple, these foundations should be sufficient for imple-
menting digital logic in cells. In practice, however,
realizing cellular logic requires an ambitious research
program. We do not have a library of the available
DNA-binding proteins and their matching repressor
patterns. We do not have good data about their kinetic
constants. We do not know about potential interac-
tions among these proteins outside the genetic regula-
tory mechanisms. Most important, we do not have a
sufficiently clear understanding of how cells reproduce
and metabolize to enable us to insert new mechanisms
in such a way that they interact with cellular functions
in predictable and reliable ways.

Beyond our lack of knowledge of the biochemistry,
the design of cellular logic circuits raises difficulties not
present with electrical circuits. To prevent interference
between gates, a different protein must be used for
each unique signal. Therefore, the number of proteins
required to implement a circuit is proportional to the
complexity of the circuit. Moreover, because the dif-
ferent gates use different proteins, their static and
dynamic properties vary. And unlike electrical circuits,
in which the threshold voltages are the same for all
devices in a given logic family, the components (pro-
teins) of cellular gates have different characteristics,
depending on their reaction kinetics. Therefore, the
designer of biological digital circuits has to take explicit
steps to ensure the signal ranges for coupled gates are

matched appropriately.
One effort required for making progress in cellular

computing is the creation of tool suites to support the
design, analysis, and construction of biological circuits.
One such tool—called BioSpice—is a simulator and
verifier for genetic digital circuits [12]. BioSpice takes
as inputs the specification of a network of gene expres-
sion systems (including relevant protein products) and
a small layout of cells on some medium. The simula-
tor computes the time-domain behavior of concentra-
tion of intracellular proteins and intercellular
message-passing chemicals. A second tool would be a
“plasmid compiler” that takes a logic diagram and con-
structs plasmids to implement the required logic in a
way compatible with the metabolism of the target
organism. Both the simulator and the compiler have to
incorporate a database of biochemical mechanisms and
their reaction kinetics, diffusion rates, and interactions
with other biological mechanisms.

An even more aggressive approach to cellular com-
puting would be to genetically engineer novel organ-
isms whose detailed structure is completely
understood and accessible from an engineering stand-
point. One idea for accomplishing such genetic engi-
neering is to gradually transfer functionality from a
wild type bacterial chromosome to one or more
increasingly complex plasmids. As functionality is
transferred, the gene sequences being transferred can
be deleted from or inactivated in the wild type chro-
mosome, leading to a cell dependent on the presence
of the new construct. Eventually, when sufficient
function is transferred to one or more plasmids, the
original wild type chromosome can be deleted, yield-
ing a novel organism. Careful choices in what is trans-
ferred could lead to the design of “minimal
organisms” with clean modularity and well-under-
stood structure. Such organisms could serve as sub-
strates for precision cellular engineering.

Toward Nanoscale Computing:
A Fantasy
Even though biological cells come in vast numbers,
cellular computing will be slow; we cannot expect
diffusion-limited chemical processes to support high-
speed switching. Thus, we do not anticipate that cel-
lular computing in itself will be a good way to solve
computationally difficult problems. On the other
hand, the ability to organize cells into precise patterns
and to cause cells to secrete chemical components
could be the foundation for the engineering con-
struction of complex extracellular structures and pre-
cise control of fabrication at the subnanometer level.
This kind of engineering requires applying the orga-
nizational principles of amorphous computing to the

COMMUNICATIONS OF THE ACM May 2000/Vol. 43, No. 5 81

mechanisms of cellular computing. In the future,
biological systems could be our machine shops, with
proteins as machine tools and DNA as control tapes.

We can envision applying this technology to the
construction of molecular-scale electronic structures.
One plausible way to construct complex, information-
rich electronic systems is to first fabricate a largely pas-
sive but information-rich molecular-scale “scaffold”
consisting of selectively self-assembling engineered
molecules. This scaffolding would be used to support
fabrication of molecular conductive and amplification
devices interconnected as the engineer requires. Pro-
teins represent good candidates for scaffolding com-
ponents; they are chemically and thermally stable and
have exquisitely selective binding domains.

This perspective allows us to entertain the fantasy
of nanoscale circuit fabrication in a future technology.
Imagine a family of primitive molecular-electronic
components, such as conductors, diodes, and
switches, is available from generic parts suppliers. Per-
haps we have bottles of these common components in
the freezer.

Suppose we have a circuit to implement. The first
stage of construction begins with the circuit and builds
a layout incorporating the sizes of the components and
the ways they might interact. Next, the layout is ana-
lyzed to determine how to construct a scaffold. The
struts are labeled so they bind only to the appropriate
electrical component molecules. For each strut, the
DNA sequence to make that kind of strut is assem-
bled, and a protocol is produced to insert the DNA
into an appropriate cell. These various custom parts
are then synthesized by the transformed cells.

Finally, we create an appropriate mixture of these
custom scaffold parts and generic electrical parts. Spe-
cially programmed worker cells are added to the mix-
ture to implement the circuit edifice we want. The
worker cells have complex programs, developed
through amorphous computing technology. The pro-
grams control how the workers perform their particu-
lar tasks of assembling the appropriate components in
the appropriate patterns. With a bit of sugar (to pay
for their labor), the workers construct copies of our
circuit we then collect, test, and package for use.

Overall, we are at a primitive stage in the develop-
ment of cellular and amorphous computing, analo-
gous to the early stages of electronics at the beginning
of the 20th century. Progress here would open a new
frontier of engineering that could dominate the infor-
mation technology of the next century.

References
1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, Jr.,

T., Nagpal, R., Rauch, E., Sussman, G., and Weiss, R. Amorphous Com-
puting. MIT Artificial Intelligence Laboratory memo no. 1665, Aug. 1999.

2. Coore, D. Botanical Computing: A Developmental Approach to Generat-
ing Interconnect Topologies on an Amorphous Computer. Ph.D. thesis,
MIT Department of Electrical Engineering and Computer Science,
Dec. 1998.

3. Coore, D., Nagpal, R., and Weiss, R. Paradigms for Structure in an
Amorphous Computer. MIT Artificial Intelligence Laboratory memo no.
1614, 1997.

4. Greenspan, D. Particle Modeling. Birkhauser, Boston, 1997.
5. Heath, J., Keukes, P., Snider, G., and Williams, R. A defect-tolerant

computer architecture: Opportunities for nanotechnology. Sci. 280,
5370 (June 12, 1998), 1716–1721.

6. Kleinrock, L. and Silvester, J. Optimum transmission radii in packet
radio networks, or why six is a magic number. In Proceedings of the
National Telecommunications Conference (Birmingham, Ala., Dec.
1978), 4.3.1–4.3.5.

7. Knight, T. and Sussman, G. Cellular gate technology. In Unconven-
tional Models of Computation, C. Calude, J. Casti, and M. Dinneen,
Eds., Springer-Verlag, Berlin,1998.

8. McAdams, H. and Arkin, A. Simulation of prokaryotic genetic circuits.
Annu. Rev. Biophys., Biomol. Struct. 27, (1988), 199–224.

9. Nagpal, R. Organizing a Global Coordinate System from Local Informa-
tion on an Amorphous Computer. MIT Artificial Intelligence Laboratory
memo no. 1666, Aug. 1999.

10. Odell, G., Oster, G., Alberch, P., and Burnside, B. The mechanical
basis of morphogenesis: Epithelial folding and invagination. Develop.
Bio. 85 (1981), 446–462.

11. Rauch, E. Discrete, Amorphous Physical Models. Masters thesis, MIT
Department of Electrical Engineering and Computer Science, May
1999.

12. Weiss, R., Homsy, G., and Knight, T. Towards in-vivo digital circuits.
Presented at the DIMACS workshop on Evolution as Computation
(Princeton, N.J., Jan. 1999).

Harold Abelson (hal@mit.edu) is a professor of computer
science and engineering in the Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology in
Cambridge, Mass.
Don Allen (dca@ai.mit.edu) is a research scientist in the Artificial
Intelligence Laboratory at the Massachusetts Institute of Technology in
Cambridge, Mass.
Daniel Coore (dcoore@uwimona.edu.jm) is a lecturer in the
Department of Mathematics and Computer Science at the University of
West Indies in Mona, Jamaica.
Chris Hanson (cph@ai.mit.edu) is a principal research scientist in
the Artificial Intelligence Laboratory at the Massachusetts Institute of
Technology in Cambridge, Mass.
George Homsy (ghomsy@ai.mit.edu) is a Ph.D. candidate in the
Department of Electrical Engineering and Computer Science at the
Massachusetts Institute of Technology in Cambridge, Mass.
Thomas F. Knight, Jr. (tk@ai.mit.edu) is a senior research
scientist in the Artificial Intelligence Laboratory at the Massachusetts
Institute of Technology in Cambridge, Mass.
Radhika Nagpal (radhi@ai.mit.edu) is a Ph.D. candidate in the
Electrical Engineering and Computer Science Department at the Massa-
chusetts Institute of Technology in Cambridge, Mass.
Erik Rauch (rauch@ai.mit.edu) is a Ph.D. candidate in the Depart-
ment of Electrical Engineering and Computer Science at the Massachu-
setts Institute of Technology in Cambridge, Mass.
Gerald Jay Sussman (gjs@ai.mit.edu) is a professor of electrical
engineering and computer science at the Massachusetts Institute of
Technology in Cambridge, Mass.
Ron Weiss (weiss@ai.mit.edu) is a Ph.D. candidate in the
Department of Electrical Engineering and Computer Science at the
Massachusetts Institute of Technology in Cambridge, Mass.

Support for this research is provided in part by the Advanced Research Projects Agency
of the Department of Defense under Office of Naval Research contract N00014-96-1-
1228.

© 2000 ACM 0002-0782/00/0500 $5.00

c

82 May 2000/Vol. 43, No. 5 COMMUNICATIONS OF THE ACM

