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Abstract

The Chimera Methodology is a new software engineering par-
adigm which addresses the problem of developing dynami-
cally reconfigurable and reusable real-time software. The
Sfoundation of the Chimera methodology is the port-based
object model of a reusable software component. The model is
obtained by applying the port-automaton formal computa-
tional model to object-based design. Global state variable
table real-time communication is used to integrate port-based
objects, which eliminates the need for writing and debugging
glue code. The Chimera real-time operating system provides
tools to support the software models defined by the Chimera
methodology, so that real-time software can be executed pre-
dictably using common real-time scheduling algorithms. A
hypermedia user interface has been designed to allow users to
easily assemble the real-time software components that are
designed based on the Chimera methodology. Use of the
methodology can result in a significant decrease the develop-
ment time and cost of real-time applications.

1: Introduction

The Chimera Methodology is a new software engineering
paradigm for designing and implementing real-time software
for multi-sensor systems. The Chimera name was used since
this methodology was a direct result of our work on the Chi-
mera real-time operating system project [28].

The methodology addresses the problem of developing
dynamically reconfigurable component-based real-time soft-
ware. Transfer and reuse of real-time software is difficult and
often seemingly impossible due to the incompatibility
between hardware and systems software at different sites.
This has meant that new technology developed at one site
must be reinvented at other sites, if in fact it can be incorpo-
rated at all. Technology transfer, therefore, has been a very
expensive endeavor, and the reuse of software from previous
applications has been virtually non-existent.

The use of component-based software has been proposed
to improve software development time by addressing the soft-
ware reuse and technology transfer issues [26]. For example,
a user developing a real-time application may need a specific
software algorithm developed at some other site. Currently,
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users may go to the library or search through the network for
keywords, then find a book or journal article describing the
mathematical theory or computer science algorithm. After
they have printed a copy of the paper, they read the article
closely, then spend significant time writing, testing, and
debugging code to implement the algorithm. Once that is
done, they write more code to integrate the new algorithm into
their existing system, and perform further testing and debug-
ging. This process can easily take days or weeks of the per-
son’s time for each algorithm needed for their application, and
thus take many months to complete the programming of an
entire application.

The ultimate application programming environment
should allow for complete software reuse and the ability to
quickly transfer technology from remote sites. Users who
need a specific algorithm would search through a global dis-
tributed software library based on the hypermedia information
system currently available with the World-Wide Web [32].
When they find a suitable book or article, they not only get the
written theory, but they can also follow a link to a reusable
software module created by the authors. The algorithm would
already be programmed, fully tested, and debugged. With an
action as simple as a mouse-click, that software algorithm is
copied into the user’s personal library, and is ready to be used
in their application. This process would take a few minutes at
most. The user could then create their application by putting
together these software building-blocks through the use of a
graphical user interface. Within hours, a complete application
could be assembled, as compared to the months that it would
take to do so using conventional methods.

This process of assembling an application without writing
or automatically generating any new glue code is called soft-
ware assembly [26]. In this paper, we describe the Chimera
methodology, which defines new software models, communi-

cation protocols, and interfaces for supporting software
assembly.

2: Related work

There has been significant research in the area of software
reuse, with three major directions emerging: software synthe-
sis, interface adaptation, and object design.

Software synthesis, also known as automatic code genera-
tion, generally employs artificial intelligence techniques such
as knowledge bases [1] [3] [24] and expert systems [12] [20]
to generate the “glue” code for automatically integrating reus-



able modules. As input, they receive information about the
software modules, the interface specifications and the target
application, and as output produce code using both formal
computation and heuristics. For a truly generic framework,
however, it is desirable that the integration of software be
based on the interfaces alone, and not on the semantics of the
modules or application, as the latter results in the need for
large knowledge bases. Furthermore, software synthesis only
allows for statically configuring an application, and usually
does not support dynamic reconfiguration.

Interface adaptation involves modifying the interfaces of
software modules based on the other software modules with
which they must communicate in order to obtain the required
software integration. In these systems, an interface specifica-
tion language is used to provide a general wrapper interface
and to allow meaningful data to be interchanged between the
modules [11] [14] [16]. This method has led to the notion of a
software bus, where an underlying server or transport mecha-
nism adapts to the software module, rather than having the
software modules adapt to the transport mechanism [4] [19].
None of these methods have been adapted to real-time sys-
terns, and there are no clear extensions which would ensure
that interface adaptation and communication between mod-
ules can be performed in real-time.

The Chimera methodology differs from interface adapta-
tion and software synthesis methods of integrating software,
in that it addresses the actual design of software components,
rather than just addressing their interfaces.

Object design is a popular software modelling technique
which can form the basis for software reuse. An object is a
software entity which encapsulates data and provides methods
as the only access to that data. Wegner distinguishes between
two types of object design methodologies: object-based
design (OBD) and object-oriented design (OOD) [7].
Whereas OBD only defines the encapsulation of data and
access to that data, OOD is an extension which also defines
the interrelation and interaction between objects. The interre-
lation of objects in OOD is defined through inheritance using
the notions of classes, superclasses, and meta-classes [34]. An
object-oriented programming language generally performs
run-time dynamic binding to support this inheritance, and
objects of different classes communicate with each other
through messages, where the message invokes the method of
another object. Such dynamic binding and message passing
creates unpredictable execution delays, especially in a distrib-
uted environment, and as a result is not suitable for the design
of real-time systems [5]. For example, The Chaos Real-Time
Operating System [22] was designed to use object-oriented
design with real-time systems. Chaos addresses the dynamic
binding issue by performing static binding during the compi-
lation and linking stages, thus allowing for predictable execu-
tion of the real-time application. The Chaos system addresses
the real-time message passing issue by creating a variety of
specialized messages which are tailored to the target applica-
tion. As stated by the authors of Chaos in [5], this, to some
extent, ruins the object model’s uniformity and partially
defeats the purpose of using the object-oriented methodology
for developing real-time systems.
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The work presented in this paper is an alternate approach
which avoids the real-time problems associated with object-
oriented design, while maintaining the advantages of using
objects to obtain modular encapsulation, a necessary basis for
software reusability. It combines object-based design with the
port-automaton computational model, as described next, to
model dynamically reconfigurable real-time software compo-
nents. ¢

Streenstrup and Arbib [30] formally defined a concurrent
process as a port automaton, where an output response is
computed as a function of an input response. The automaton
executes asynchronously and independently, and whenever
input is needed, the most recent data available is obtained.
The automaton may have internal states; however all commu-
nication with other concurrent processes are through the ports.
The port-automaton theory was first applied to robotics by
Lyons and Arbib [15], who constructed a special model of
computation based on it, which was called Robot Schemas.
The schema used the port-automaton theory to formalize the
key computational characteristics of robot programming into
a single mathematical model.

Arbib and Ehrig extended the work on robot schemas for
algebraically specifying modular software for distributed sys-
tems by using port specifications to link modules [2]. The
specification presented requires that there be exactly one input
for every output link, and vice versa. The specification does
not include any notion of objects nor any method to obtain
reusability of the modules and reconfigurability of a sub-
system, and they do not specify the mechanisms required to
implement their model.

In our research, these port specifications have been com-
bined with object-based design in order to create a model for
reconfigurable real-time software components. The port spec-
ifications are also extended so that an output port can be
spanned into multiple inputs and multiple outputs can be
joined into a single input. In addition, operating system ser-
vices are provided such that the communication through these
ports can be performed in real-time and a set of port-based
objects. can be reconfigured dynamically. The next section
presents the details of the model.

3: Port-Based Objects

A new abstraction for real-time software components that
applies the port automaton theory to object-based design is the
port-based object. A port-based object has all the properties
associated with standard objects, including internal state, code
and data encapsulation, and characterization by its methods. It
also has input, output, and resource ports for real-time com-
munication. Input and output ports are used for integrating
objects in the same subsystem, while resource ports are used
for communication external to the subsystem, such as with the
physical environment, a user interface, or other subsystems.

A link between two objects is created by connecting an
output port of one module to a corresponding input port of
another module, using port names to perform the binding. A
configuration can be legal only if every input port in the
system is connected to exactly one output port. A single
output may be used as input by multiple tasks. In our dia-



grams, we represent such fanning of the output with just a dot
at the intersection between two links, as shown in Figure 2.
Both modules A and B require the same input p, and therefore
the module C fans the single output p into two identical out-
puts, one for each A and B.

If two modules have the same output ports, then a join con-
nector is required to merge the data into a single unambiguous
output port, as shown in Figure 3. The join connector’s output
is based on some kind of combining operation, such as a
weighted average. In this example modules A and B are both
generating a common output p. In order for any other module
to use p as an input, it must only connect to a single output p.
The user or software assembly tool (such as Onika [9]) can
modify the output port names of modules with the same out-
puts using the aliasing features provided by the RTOS, such
that they are two separate, intermediate variables. In our
example, the output of module A becomes p’, and the output
of module B becomes p”. The join connector takes p’ and p”
as inputs, and produces a single unambiguous output p.

A task is not required to have both input and output ports.
Some tasks instead receive input from or send output to the
external environment or to other subsystems, through the
resource ports. Other tasks may generate data internally or
receive data from an external subsystem (e.g. trajectory gen-
erator and vision subsystem interface) and hence not have any
input ports, or just gather data (e.g. data logger and graphical
display interface), and hence have no output ports. Any com-
munication protocol can be used for the resource ports. This
allows the hardware dependencies of an application to be
encapsulated within a single port-based object.

3.1: Object Integration using State Variables

A task set is formed by linking multiple objects together to
form either an open-loop or closed-loop subsystem. Each
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Figure 1: Simplified model of a port-based object
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Figure 3: Joining multiple outputs into a single input
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object in the subsystem executes as a separate task on one of
the processors in a multiprocessor environment. An example
of a fairly simple closed-loop subsystem is the PID joint con-
trol of arobot, as shown in Figure 4. It uses three modules: the
Joint position trajectory generator, the PID joint position con-
troller, and the rorque-mode robot interface.

The port-automaton computational model states that every
task executes autonomously. At the beginning of every cycle,
the task obtains the most recent data available from its input
ports. At the end of the cycle, after performing any necessary
computations, the task places new data onto its output ports.
The task is completely unaware of the source and destination
of the input and output data respectively.

Autonomous execution is desirable because it allows a task
to execute independently of other tasks, and therefore does
not block because another task is using a shared resource.
Without blocking terms, the analysis and implementation
complexity of real-time scheduling algorithms such as maxi-
mum-urgency-first [27] and rate monotonic [23} is minimized.

The port-automaton model assumes that the most recent
data is always present at the input ports, which implies that the
ports are not message queues. With message queues, it is pos-
sible that no messages are waiting, which occurs when a task
producing an output is slower than the task requiring the data
as input. On the other hand, if the task producing output is
faster, then there is the possibility of multiple messages wait-
ing at the port, and the next message to be received is not the
most recent data. Messages create further problems if an
output must be fanned into multiple inputs. In such cases, a
message must be replicated, thus making the time to output
data a function of the number of external tasks. This contra-
dicts the automaton model where an object is not aware of its
external environment.

State variables provide an alternative to messages. A sub-
system state can be implemented by defining each port as a
state variable. Writing to an output port then translates into
updating the state variable, while reading from an input port
translates into reading the state variable, This method guaran-
tees that the most recent data is always available as a state
variable. However, this also introduces a problem of integrity.

Since a state variable is shared, proper synchronization is
required to ensure that only complete sets of data are read and
written. A state variable can be a vector or other complex data
structure, thus the entire transfer must be performed as a crit-
ical section. Using semaphores or similar types of synchroni-
zation violates the port-automaton model because they create
dependencies between tasks. They introduce blocking terms
to the real-time scheduling analysis and create the possibility
of priority inversion and deadlocks. We now present our solu-

trajectory PID joint orque-mode
_ generator position robot
oint position controller interface B,
from robot:  to robot;
from user rawg'oint joint move
posivel data ‘command

Figure 4: Example of PID joint conirol.



tions for obtaining the required synchronization while main-
taining an autonomous execution model.

For single-processor environments, the synchronization
can be obtained by locking the CPU, assuming that the size of
a state variable transfer is small. Some may argue that locking
the CPU may lead to possible missed deadlines or priority
inversion. This would be true in the ideal case where a CPU
has no operating system overhead. However, considering the
practical aspects of real-time computers, it is not unusual that
a real-time microkernel locks the CPU for up to 100 psec in
order to perform a system call such as a full context switch
[31]. If the total time that a CPU is locked in order to transfer
a state variable is less than the worst-case locking of the
microkernel due to operating system functions, then there is
no additional effect on the predictability of the system. Only
the worst-case execution time of that task must be increased
by the transfer time, and that can be accounted for in the
scheduling analysis.

In most sensor-based control applications, the volume of
data is small. For example, for the PID controller in Figure 4,
each state variable requires ndof transfers, where ndof is the
number of degrees-of-freedom for the robot. A typical value
for ndof is less than 10, and therefore the longest CPU locking
for a state variable would be the time to perform 10 transfers.
This would typically take less than 5 psec on a CPU with a
100 psec context switch time, considering that a context
switch may contain as many as 200 operations for saving and
restoring registers and updating a process control table.

One notable exception in which the small volume of data
assumption does not hold is for images. Vision applications
can easily require several megabytes of data per second. In
our model, such applications are implemented as a separate
subsystem using special image processing hardware, and
interfaced to the port-based objects using one of the resource
ports [25]. For a vision subsystem, configurable inter-object
communication can be implemented using high-volume data
streams and synchronized tasks [10], instead of states and
asynchronous tasks as described in this paper. Synchronous
systems are much more limiting because all tasks must exe-
cute at the same frequency and dynamic reconfigurability of
more than one task at a time is usually not possible. However,
synchronous systems do have an advantage for vision systems
where a synchronized software pipeline is desired. The output
of such a pipeline is a list of features or specific data points
within an image. This low-volume output can then be sent to
a control subsystem which uses the Chimera methodology for
applications such as active vision [18].

For multiprocessor environments, we have designed a
global state variable table mechanism for the inter-object
communication [29], since locking only one of the CPUs will
not provide the necessary atomic execution, and locking all
the CPUs is not feasible. The mechanism is based on the com-
bined use of global shared memory and local memory for the
exchange of data between modules, as shown in Figure 5. The
global state variable table is stored in the shared memory. The
variables in this table are a union of the input port and output
port variables of all the modules that can be configured into
the system. Tasks corresponding to each control module
cannot access this table directly. Instead, every task has its
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own local copy of the table, called the local state variable
table. Only the variables used by the task are kept up-to-date
in the local table. Since each task has its own copy of the local
table, mutually exclusive access to it is not required. There-
fore, a task can execute autonomously since it never has to
lock the local table. The key is then to ensure that the local and
global tables are updated to always contain the most recent
data, and that the local table is never updated while a task is
using the table. Details of the global state variable table mech-
anism are given in [29].

3.2: Configuration Verification

In order to ensure that the data required by a port-based
object is always available, a configuration analysis is
required.

A legal configuration exists when there is exactly one
output port for every input port in the task set, and there are
no two modules which produce the same output. The correct-
ness of a configuration can be verified analytically using set
equations, where the elements of the sets are the state vari-
ables. A configuration is legal only if

(Y;nY) = @, forallijsuchthat 1 Sij<kais (1)
and
k k
(5x)=(bn) @
: J . J
j=1 j=1

where X; is a set representing the input variables of module
J» Y;is a set representing the output variables of module j, and
k is the number of modules in the configuration.

As an example, consider the configuration shown in
Figure 4. Assume that module 1 is the trajectory generator
Joint position, module 2 is the PID joint position controller,
and module 3 is the torque-mode robot interface. Therefore
X, =0@. Y, = {6,6,}, X, =1{9,6;6,0,},
Y, = {t},X;, = {t,},and¥, = {6,,0,}.

From these sets we can easily see that Y, Y,, and Y3 do not
intersect, and hence (1) is satisfied.

To satisfy (2), the union of the input sets and output sets
must be taken and compared. We get

UX=XjUuX,UX3= {6,660 6,7} ®3)
and
UY=Y,UY,UY;={6,0,6 6,1} @

| Global State Variable Table l

local state local state local state local state
variable table] |variable table variable table| |variable table
task task . ' ' task task
module feee | module module |eee ] module
Ay A Ky K
Processor A Processor K

Figure 5: Structure of state variable table mechanism
for port-based object integration



Since UX = UY, Equation (2) is also satisfied and thus the
configuration shown in Figure 4 is legal.

A task set consisting of port-based objects provides a good
model for real-time scheduling analysis, because each task
executes autonomously and independently of other tasks.
Such characteristics are desirable, as they allow for real-time
scheduling using algorithms such as maximum-urgency-first
[27] or rate monotonic [23], without the complexity involved
in task sets with inter-task dependencies which can result in
significant blocking, priority-inversion, or deadlock. The
maximum-urgency-first algorithm is preferred, since it has
both a performance improvement over rate monotonic, and it
accounts for the fact that not all tasks have to be hard real-
time. For example, many sensor tasks are soft real-time, in
that they can tolerate the occasional missed deadline as long
as the object can extrapolate the data to account for the missed
cycle.

Details of the maximum-urgency-first real-time schedul-
ing algorithm used by the Chimera RTOS, including support
for hard and soft real-time tasks, aperiodic servers, timing
failure detection and handling, and automatic task execution
profiling are given in [25].

3.3: Detailed Port-Based Object Model

In order to ensure autonomous execution of a port-based
object, the local and global state variable tables must be
updated regularly, in such a way that the updates never occur
while a task is executing. To address this issue, we first dis-
cuss a new programming paradigm for implementing soft-
ware, then provide a detailed model of a port-based object in
support of that paradigm.

Traditionally, software modules are implemented as com-
plete entities, which can invoke RTOS services through the
use of system calls. Such an implementation model, however,
forces each module to be responsible for its own communica-
tion, synchronization, and integration with other modules.

Chimera uses an “inside-out” method of programming as
compared to the traditional methods of developing software.
Rather than the software modules invoking the RTOS when-
ever an operating system service is required, the RTOS ser-
vices are always executing, and they invoke methods of the
port-based object as needed. Programmers who create soft-
ware modules only have to define the methods of the port-
based object; they do not have to write any kind of synchroni-
zation, communication, or other glue code. As a result, the
creation of a reusable software component using the Chimera
methodology is simpler than creating a traditional software
module. The new programming paradigm is also highly desir-
able because the operating system is in total control of every
task, and as a result enables automatic execution time profil-
ing for tasks, and allows the operating system to detect timing
failures and handle them accordingly [25].

In order to demonstrate the principles of the new program-
ming paradigm, a detailed diagram of the port-based object
model is presented. Every port-based object in a configuration

is a real-time task on one of the processors, and has the struc-
ture shown in Figure 7.

The ellipses show the possible states of the task, which can
be NOT-CREATED, OFF, ON, or ERROR. A task that is in the OFF
state has been created, meaning that a context for the task
exists, but that the task is in a suspended state waiting for a
signal. The ON state represents a task that is ready to execute
its next cycle, either in response to a timer wakeup signal for
a periodic task, or the arrival of an event in the case of an ape-
riodic task. The ERROR state is for tasks that have encountered
unrecoverable errors during their execution.

The transition between states occurs as a result of signals
sent by a subsystem interface to the RTOS. The subsystem
interface signals can come from a user through a command-
line or graphical interface, from an external subsystem, or
from another task in the same subsystem in the case of an
embedded system. These signals are shown in Figure 7 as
solid bars.

The methods of an object are invoked by the RTOS in
response to the signals from the subsystem interface, and form
part of the state transitions. The methods are shown as rectan-
gular boxes. Each object has each of the following special
methods: init, on, cycle, off, kill, error, clear, reinit and sync.
The init and on components are for a two-step initialization.
The cycle component executes once for each cycle of a peri-
odic task, or once for each event to be processed by an aperi-
odic server. The off and kill components are for a two-step
termination. The error and clear components are for auto-
matic and manual recovery from errors respectively. The
reinit component is used for dynamic reconfiguration. The
sync component is used by aperiodic servers to receive events
through a port-based object’s resource ports. More details on
each of these methods is given below.

Before and after each method of a port-based object is exe-
cuted, a transfer is made between the local and global tables.
This ensures that a method always uses the most up-to-date
data, and that new data is immediately placed into the global
table. These state variable table transfers are shown in
Figure 7 as oval boxes.
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A port-based object can have two kinds of input: constant
input that needs to be read in only once during initialization
(in-const) and variable input which must be read in at the
beginning of each cycle (in-var) for periodic tasks, or at the
start of event processing for aperiodic tasks. Similarly, a task
can have output constants (ous-const) or output variables (our-
var). Both the constants and variables are transferred through
the global state variable table. State constants are used for
developed generic software and reconfigurable device driv-
ers, as described in detail in [25].

A two-step initialization and termination is used to support
dynamic reconfigurability. High-overhead initialization and
termination code is performed during the init and kill methods
respectively, whereas tasks can be activated and deactivated
quickly using the on and off methods. The on method is used
to update the objects internal state to reflect the current sub-
system state. The off method is used in cases where the sub-
system state must be modified when a task terminates in order
to ensure the integrity of the system even after the task stops
executing.

The cycle component is executed every time the task
receives a wakeup signal while the task is in the ON state. For

% on any error
after task receives
‘on’ signal
P (CERROR
clear if SBS_ER?OR
n any error refurne
B g
‘off stale  Qut-consts)
Kill if SBS_CONTINUE

returned
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call specitied. >xxx: copy from global into
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Figure 7: Detailed model of a port-based object.
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periodic tasks, the wakeup signal comes from the RTOS timer,
whereas for aperiodic tasks, the wakeup signal can result from
an incoming message or other asynchronous signaling mech-
anism supported by the underlying operating system. The
sync method is used by the aperiodic servers to receive events,
and to block if no events are pending.

The Chimera methodology uses a global error handling
paradigm to detect and handle faults in the system [25]. An
error signal is generated whenever an error is encountered.
The signal can be caught by either a user-defined or system-
defined error handler. By default, an error generated during
initialization prevents the creation of the task, and immedi-
ately calls the kill component which can free any resources
that had been allocated before the error occurred. If an error
occurs after a task is initialized, then the error component is
called. The purpose of the error component is to either
attempt to clear the error, or to perform appropriate alternate
handling, such as a graceful degradation or shutdown of the
system. If for any reason the task is unable to recover from an
error, the task becomes suspended in the ERROR state, and a
message sent to the subsystem interface indicating that oper-
ator intervention is required. After the problem is fixed, the
operator sends a clear signal, at which time the clear compo-
nent is called. The clear method can do any checks to ensure
the problem has indeed been fixed. If everything is fine to pro-
ceed, then the task returns to the OFF state, and is ready to
receive an on signal. If the error has not been corrected, then
the task remains in the ERROR state. The Chimera methodol-
ogy currently defines the fault detection and handling, but
does not yet define methods of incorporating fault tolerance.

The port-based object model allows tasks to be configured
based on the input constants. Such configuration is performed
during the task’s initialization. If one of those constants
changes as a configuration changes (which occurs, for exam-
ple, when the tool on the end-effector of a robot changes) the
task must be re-initialized, which is accomplished through the
reinit method. A large bulk of a task’s initialization, including
creating the task’s context and translating symbolic names
into pointers, does not have to be re-performed. Only that part
of the initialization which is based on the input constants
needs to be executed during a re-initialization. The reinit
method is called automatically when a task that generates an
out-const is swapped out, and a new task generating a poten-
tially different value for the same out-const is started. The re-
initialization ensures that the entire system is dealing with the
same constants always, and should a conflict occur, it can be
flagged as an error immediately.

With a detailed framework of the port-based object
described above, the programmer of a software component
only has to define the code for the specific methods. The
RTOS takes care of everything else, including the communi-
cation using state variables and the synchronization and tran-
sition between task states. Based on the framework, a C-
language specification using abstract data types have been
defined and a code template for creating reusable software has
been created. Details are given in [25]. The choice of using C
for the specifications instead of an object-oriented language
such as C++ is to account for the fact that most programmers
of the software components are control and mechanical engi-



neers, and not computer scientists or software engineers.
These programmers do not have the required background in
data structures and objects to make efficient use of an object-
oriented language. Therefore, a language that is more suitable
to their education and experience was selected, to minimize
the amount of time required to train the engineers for using the
new framework.

3.4: Subsystem Reconfiguration

The Chimera methodology has been conceived especially
to support dynamically reconfigurable software. In this sec-
tion, we demonstrate that capability by use of an example.
Figures 8 and 9 show two visual servoing configurations.
Both configurations obtain a new desired Cartesian position
from a visual servoing subsystem [18], and supply the robot
with new reference joint positions. The subsystem configura-
tion in Figure 8 uses standard inverse kinematics, while a sim-
ilar configuration in Figure 9 uses a damped least squares
algorithm to prevent the robot from going through a singular-
ity [33]. The visual servoing, forward kinematics and Jaco-
bian, and position-mode robot interface modules are the same
in both configurations; only the controller module is different.

To support dynamic reconfigurability, either the union of
all objects required for the application created, but not neces-
sarily activated, during initialization of the system, or new
tasks can be dynamically created in the background prior to
becoming activated. As an example, assume that the union of
the objects used in Figures 8 and 9 are created, and that con-
figuration in Figure 8 executes first. The inverse kinematics
task is turned on immediately after initialization, causing it to
run periodically, while the damped least squares and time
integrator tasks remain in the OFF state. When the robot is at
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risk of going through a singularity, a signal is sent to the sub-
system interface indicating that a dynamic reconfiguration to
the next configuration is required. In response, an off signal is
sent to the inverse kinematics task and an on signal to the
damped least squares and time integrator tasks. On the next
cycle, the new tasks automatically update their own local state
variable table, and begin periodic cycling, while the inverse
kinematics task becomes inactive. Assuming the on and off
operations are fairly low overhead, the dynamic reconfigura-
tion can be performed without any loss of cycles.

For a dynamic reconfiguration which takes longer than a
single cycle, the stability of the system becomes a concern. To
ensure the integrity of the system, a global illegal configura-
tion flag is set when the dynamic reconfiguration begins. It
signals to all tasks that a potentially illegal configuration
exists, Critical tasks which send signals directly to hardware
or external subsystems (e.g. the robot interface module) can
go into a locally stable mode. The module then ignores all
input variables from other tasks, and instead implements a
simple internally-coded local stability feedback loop which
maintains the integrity of the system. The feedback loop, for
example, can keep a robot’s position constant or gradually
reduce the velocity while the dynamic configuration takes
place. Note that the actions to be executed are module depen-
dent and not part of the software framework. When the
dynamic reconfiguration is complete, the global flag is reset,
and the critical tasks resume taking input from the state vari-
able table. The illegal configuration flag can also be used to
indicate the presence of an error in the system, thus ensuring
that critical modules continue to execute despite the errors.

One issue that arises is determining safe points for per-
forming dynamic reconfiguration. Such an issue must be
addressed by the control systems designer, and thus is not
addressed by the Chimera methodology. In our systems, we
have taken a conservative approach, allowing dynamic recon-
figuration to only occur when a robot is at rest. This is imple-
mented by ensuring that a sub-goal is only considered to have
been reached once the velocity and acceleration of the robot
is zero. Further research into control systems can investigate
more aggressive approaches, such as allowing dynamic
reconfiguration while the external hardware is still in motion.

3.5: Summary

This paper describes the Chimera methodology for devel-
oping dynamically reconfigurable real-time software. The
foundation of the methodology is the port-based object, which
combines object-based design with the port-automaton the-
ory. The use of the methodology can significantly decrease the
time and cost required to develop real-time code, improve
technology transfer by providing reusable software compo-
nents, and predictably execute real-time applications by pro-
viding a complete set of specifications and analytic tools.

The Chimera methodology has been successfully applied
to several multi-sensor based applications, both in labs at Car-
negie Mellon University and elsewhere, including at the Air
Force Logistics Center, NASA’s Jet Propulsion Laboratory,
and Air Force Institute of Technology. The methodology is



also being used by Sandia National Laboratories as a basis for
developing virtual laboratories [9].
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