BAE SYSTEMS

# Barriers to WDM Deployment on Military Platforms

John Gallo BAE SYSTEMS Aerospace Electronics Lansdale, PA 19446

DARPA/MTO WDM for Military Platforms Workshop 18 April 2000

> REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

### Militarized (Flight-Qualified) 18 GHz Single-Mode Transmitters



### Mature, Military Hardware for Point-to-Point Applications



RF Flatness over Frequency @ 90C





APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION

#### **BAE SYSTEMS**

### Generic WDM for Non-Blocking, Full Broadcast Antenna Selection





WDM Fiber Network Replacing Conventional RF Cabling, Optical Power Divider (PD) and Optical Tunable Filters (OTF) Replacing Conventional RF Switch; All Antenna Signals Available at Each Receiver

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION

#### BAE SYSTEMS

#### **Current Analog 18 GHz Link WDM System**



APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION

## Dual Channel (10.1 and 10.5 GHz) Switching (Optical Tunable Filter)







Switching Speed ~80 ns RF Crosstalk <-76 dBe RF Bandwidth 18 GHz Insertion Loss ~8 dBe

> REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

#### BAE SYSTEMS

#### Low Noise Optically Amplified Microwave Links



BAE SYSTEMS has developed proprietary technology to reduce the noise figure (RIN ~ -157 dB/Hz) of fiber optic microwave links with high optical processing losses due to WDM, switching, and other distribution components.

### Desparately Needed Developments to Enable **BAE SYSTEMS** Replacement of RF Switches

- Low Insertion Loss, High-Speed Switches
  - 10 ms SONET Switching is Too Slow for Military Applications
  - <10 μs is Typical Requirement (<100 ns for High POI Appl.)</li>
  - Narrow Bandwidth (FP), High-Speed Switches Don't Help!!
- Low-RIN EDFAs
  - WDM Requires Muxing and Demuxing Multiple Channels
  - EDFAs ALWAYS Degrade Analog Link Performance
  - EDFA RIN Must be Reduced Below -155 dB/Hz
- High Crosstalk Suppression Between WDM Channels (Optical Switches for Tunable  $\lambda$  Filtering)
  - Easy for Narrowband RF Signals (<1 GHz)
  - Difficult for 18 GHz and Higher Sidebands
    - Fiber Bragg Gratings are the Only Demonstrated Technology to Achieve > 35 dBo Crosstalk Suppression for 18 GHz Sidebands
- High-Power WDM DFB Arrays
  - >40 mW/Channel @ RIN <-160 dB/Hz, < 1 MHz Linewidth</p>