Electromagnetic Design of Diffractive, Micro Cavity, and Photonic Band Gap Devices

By: Dennis W. Prather

Department of Electrical and Computer Engineering

Outline

- Electromagnetic Analysis and Design of Micro-Photonic Devices
- Applications for WDM
 - Embedded spectrometer
 - Photonic band gap filtering
- Diffractive Optic Design for On-Axis Spectroscopy
 - f/# dependence chromatic dispersion
 - Wavelet based multiresolution optimization
 - Fabrication of meso-scopic grayscale DOEs
- Photonic Band Gap Filters
 - Band Gap Design for finite length PBGs
 - Cavity arrays for WDM
 - Active semiconductor modeling

Why Electromagnetic Models Are Necessary

- As the scale of photonic devices approach the wavelength of operation boundary coupling effects significantly influence the EM fields on the boundary.
- This effect must be fully accounted for in the solution to the boundary value problem.
- This precludes the use of scalar and various other approximate methods.

3D Diffractive Lens Analysis Results

Computational Lattices In Three-Dimensions

Application I: Embedded Spectrometer

Application I: Scanner Development

Collaboration with Chemnitz University of Technology, Germany

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Spectrometer setup, D = 5mm, f = 5mm

7.86mm9.8mm11.41mmREVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION

Application I: Lens Design

Electromagnetic-Based DOE Optimization

1. initial guess

Repeat

- 2. use rigorous electromagnetic model to analyze DOE3. evaluate performance analyze DOE

 - 4. optimize performance metric

Wavelet-Based Optimization Method

Wavelet Decomposition Process

First order Haar Wavelets, $a_{1m}\psi(2 \ x-m)$

Second order Haar Wavelets, $a_{2m}\psi(2^2x-m)$

Third order Haar Wavelets, $a_{3m}\psi(2^3x-m)$

Diffractive Profile

Profile and Efficiency Improvements

Fabrication of Grayscale Mesoscopic DOEs

Outer zones of an 8-level EM optimized DOE

Application II: Photonic Band Gap Devices

- PBG's guide light based on the scattering properties created by tailoring the surface profile.
- They have a strong spectral dependence, which can be exploited in design.

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION WDM Filtering using Two Cavities

6 Channel WDM Filtering using Single Cavity Filters

6 Channel WDM Filtering using Single Cavity Filters

Parameterization Method for Semiconductor Amplifier

FDTD Results: N = 12e18/cm⁻¹

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION

Semiconductor Gain Modeling in FDTD

Summary

- Discussed the electromagnetic analysis and design of diffractive lenses and photonic band gap devices.
- Presented two applications for WDM
 - Embedded spectrometer
 - Photonic band gap filtering
- Introduced Wavelet based multiresolution optimization of diffractive lenses.
- Showed *f*/# dependence chromatic dispersion and its effect on spectral filtering.
- Channel drop filters based on an array of single cavity photonic band gap channels.