DARPA Workshop WDM for Military Platforms April 18, 2000

Robust WDM Components, Packaging, and Integration

Mary Hibbs-Brenner Honeywell Technology Center

<u>Outline</u>

- Application/System Level Motivation
 - military
 - commercial
- Requirements
- Technology Enablers

Honeywell

Applications and System Motivation

- Multi-sensor networks
 - Military: flight control
 - Commercial: controlling critical environments
- Security: use multiple wavelengths to ensure channel separation
- Interconnects
 - Military: increased reliability via reduced number of connectors
 - Commercial: 10 Gbps Ethernet and beyond

Likelihood of Commercial Volumes for WDM

Coarse WDM proposed to IEEE 802.3ae committee for 10 Gbps Ethernet

- multimode fiber to minimize cost over short distances (100 - 300m)
- both 850nm and 1300nm proposals
- 4 channels at 3.125 Gbps

Optically Addressed Sensor Networks

- The need:
 - Vehicle management systems/condition based maintenance systems require many sensors, with hundreds of pounds of associated wiring
 - Sensors need to tolerate high temperatures, electrically noisy environments
 - Sensing multiple parameters (temperature, strain, vibration, etc.), widely distributed across vehicle
- Mission benefits of optically addressed sensor networks
 - Condition based maintenance-improved maintenance efficiency, reduced downtime, increased safety
 - Reduced weight means increased range/fly time for UAVs
 - Improved vehicle performance and maneuverability with improved flight control

Honeywell

Honeywell Technology Center APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Optically Addressed Sensor Networks

1. ORIMS for wide temperature range operation

Honeywell

MEMS and WDM Photonics Technology Enable Optically Addressed Sensor Networks

MEMS: Optical Resonant Microsensors

- Flexibility
 - multiple sensor types
 - plug-and-play potential
 - expandable
- No electronics or power at sensor node
 - non-incendiary
 - compatible to harsh environments
 - EMI immunity at sensor
 - reduced sensor node cost

Optical WDM networks

- Reduced cabling weight and volume
- Wavelength routes to a node, frequency domain used to distinguish different at node

Honeywell

Honeywell Technology Center APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Networked Photonic Sensing

- Uses network topology and routing concepts
- More powerful concept than multiplexing yet simpler to apply and more flexible.
- Usable with virtually all optical sensor types
- Expandable design with ability to lower cost of sensing by a factor of 10 to a 100!
- Takes advantage of emerging "all optical" network technology and components

Honeywell Technology Center APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION

Honeywell

Critical Spaces Applications

Laboratories and General Spaces

- Hazardous gas, VOC, bacteria detection
- Demand controlled ventilation
- Automatic (and repeatable) fume hood containment testing
- Room occupancy detection (CO₂)
- Room and duct static pressure measurement

Animal Research Facilities

- Detection of allergens (ammonia)
- Clean Rooms
 - On-line particulate monitoring

Requirements and Implications

Requirements

- Low cost
- Large temperature range
- Temperature insensitivity
- <100 meter link lengths
- Compact
- Standard supply voltage, <3.3, 5V
- Switching times
 - msec for sensors
 - nsec for data

Implications

- Multi-mode alignment tolerances, integration
- Coarse WDM
- VCSEL wavelength shifts 4X slower
- Active, tunable compensation
- Multi-mode fiber, 850nm sufficient
- Monolithic and heterogeneous integration
- Limits MEMS applications, or requires new approaches to MEMs
- MEMs will work
- Need non-mechanical approach

Honeywell

Candidate Enabling Technologies for WDM

MUX/DeMUX/Add-Drop

Sources

- VCSEL
- PBG μ-cavity laser
- resonant reflective filter
- heterogeneous integration

• diffractive elements/gratings

- photonic bandgap devices
- MEMS

Receivers

- dielectric filters
- resonant reflective filter
- photonic bandgap devices
- heterogeneous integration

Honeywell

OMNet-Derivative Parallel Optical Data Links

Overview

- Internally Developed at HTC for Ruggedized Applications
- Engineering Prototypes Delivered to Potential Users for Evaluation
- TX Module: 1x12 array of standard MicroSwitch 850
 nm VCSELs with Helix HXT 2000 ASIC
- RX Module: 1x12 array of MicroSwitch GaAs PIN detectors with Helix HXR 2012B ASIC
- Silicon V-groove Fiber Interface with Metallized-angle Polish
- Low Profile Package
- Standard MT Connectors, Fiber Ribbon (250 µm pitch)
- Tested up to 2 GHz per Channel

Honeywell Technology Center APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Smart Pixel Array with Heterogeneous Integration

2D OE array bump-bonded directly on top of a Si-CMOS ASIC chip

An 256 VCSEL and 256 PD array integrated with a Si-CMOS ASIC.

850nm VCSEL lights are perceived as red on a 3-chip CCD camera.

4x4 clusters (64 VCSELs) powered through the AISC

Four active VCSELs in a unit cell light up, captured by a singlechip CCD camera.

Honeywell

Honeywell Technology Center APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Guided-Mode Resonant Filters for Optoelectronic Devices Wavelength/Polarization Division Multiplexing

Honeywell Technology Center APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Opal Structures with 3D Photonic Bandgap

SEM micrograph showing inverse opal structure fabricated by selfassembly Visible Regime

Low threshold laser

Funded under NEDO Grant on tunable photonic crystals

Infrared Regime

- Mirrors and filters
- **IR** camouflage
- **IR Electrochromics**

Funded under MURI Grant on IR Camouflage

Microwave Regime

- **Tunable phase shifters**
- **Adjustable antennas**
- Phased-array antennas

Attenuators

Honeywell Technology Center APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED

Opal Structures: Fabrication & Features

Porous silica FCC Opal

2-component nanocomposite

Inverse opal photonic crystal

Materials

- Semiconductors
- **D** Polymers
- Metals
- Magnetic materials
- **Thermoelectrics**

Features

- **Tunable 3D lasing**
- **Tunable photonic crystals**
- Metallicity gap in IR
- Anomalous coherent backscattering

Collaborators

- **Eli Yablonovitch (UCLA)**
- **Sajeev John (U. Toronto)**
- **V. Vardeny (U. Utah)**
- **J. Whiley (DARPA) Honeywell**

Honeywell Technology Center APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Summary

- Transition of optoelectronics from telecom to datacom required technology development
- The same will be true for WDM for LANs and SANs
- Military applications may leverage commercial CWDM but will have special reliability and ruggedization req'ts
- Widespread Acceptance Requires both Cost Reduction and Volume \rightarrow technology development