

Advanced Micro Ring Resonator Filter Technology

G. Lenz and C. K. Madsen Lucent Technologies, Bell Labs

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

All-Pass Filters

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Mathematical Form

$$H(\omega) = \prod_{n=0}^{N-1} \frac{e^{j\omega} - z_n}{e^{j\omega} z_n^* - 1} = \prod_{n=0}^{N-1} \frac{e^{j\omega} - r_n e^{j\theta_n}}{e^{j\omega} r_n e^{-j\theta_n} - 1}$$

$$|H(\omega)| = 1 \quad \phi(\omega) = \sum_{n=0}^{N-1} Arg\left[\frac{e^{j\omega} - z_n}{e^{j\omega} z_n^* - 1}\right]$$

Phase equalization without amplitude distortion

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Group Delay

Larger FSR \Rightarrow smaller dispersion; More stages \Rightarrow more dispersion

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Four-Stage All-Pass Filter

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Four-Stage All-Pass Filter Experimental

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Dispersion vs. Bandwidth Tradeoff

25 GHz Channel Spacing

100 GHz Channel Spacing

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

All-Pass Filter - Effect of Finite Loss

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Broadband All-Pass Filters

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Multi-channel Dispersion Compensation

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Thin-film All-Pass Filter

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

General Construction of an All-Pass Filter

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

More General All-Pass Structures

$$det(M) = 1$$

$$M_{11}^* = M_{22}M_{33} - M_{23}M_{32}$$

$$M_{22}^* = M_{11}M_{33} - M_{13}M_{31}$$

$$M_{33}^* = M_{22}M_{11} - M_{21}M_{12}$$

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Simple Case

Scaling problem:

Larger FSR \Rightarrow Smaller rings \Rightarrow Larger bend loss \Rightarrow Larger Δ material \Rightarrow Coupler gap too small

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

MZI-based APF

This design is <u>no longer sensitive</u> to the couplers

Equivalent to simple case, but with tunable coupling

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Another solution

Vertical grating-assisted coupling

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Nonlinear all-pass filters

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Practical considerations

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Summary

- Ring resonators can be used as tunable optical phase equalizers
- Large bandwidth devices require many small rings
- Ring loss needs to be minimized
- Nonlinear micro rings may be used for fast all-optical switching

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED