Rockwell Science Center (RSC) Technologies for WDM Components

DARPA WDM Workshop April 18-19, 2000

Monte Khoshnevisan & Ken Pedrotti

Rockwell Science Center Thousand Oaks, CA

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION

Introduction

- RSC has been a center of excellence for more than 20 years, performing R&D on components applicable to telecomm, e.g., sources, detectors, high speed microelectronics, and other components
- Technology transition to former Rockwell businesses (e.g., Conexant Systems, ROK/NTSD to Alcatel), and spin-offs (e.g., Vitesse)
- New RSC initiatives target R&D and business opportunities, including those related to WDM and telecomm, for military and commercial applications

WDM Offers Significant Benefits to the Military

Examples of Applications

- Communication
 - Fiber Optic
 - Free Space Optical
 - Fiber & Free Space
 - Multi-Mode (RF & Optical)
- Replacing Wires on Military Platforms (Advantages: Weight, Size, Cost, Low/No EMI)
 - Sensors
 - Data
 - Control
- Others

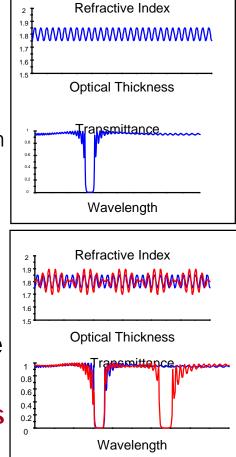
Technology Requirements

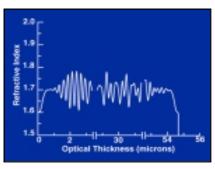
- DWDM
- Switching / Routing
- Infrastructure for Higher Speeds (e.g., 40 Gb/s)
- Fiber Dispersion Compensation
- Wide Band / Multi-Band WDM
- Beam Steering
- Eye Protection

.

- High Performance Vs Cost
- Robust & Affordable Components

Rockwei


APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED


REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OF OPINION

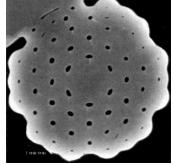
"Rugate" Technology for Spectral Control

Rugate Technology

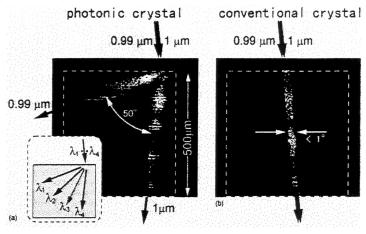
- Sinusoidal index profile(s)
- Allows exquisite control of reflectivity and bandwidths for single or multi-line filters
- Multi lines are integrated, not stacked
- Graded index "Quintic" profile provides optimum index match to surrounding media
- Apodization reduces sidebands near reflection peaks
- Fabrication requires extreme control on index profile
- Suitable for non-conventional WDM
- An AFRL concept that has proven to be a powerful method for spectral control
- RSC is the technology leader in rugates and related developments
- Physics of rugates is related to (1-D) photonic bandgap materials

Rugates + many other thin film & optical components are now RSC "products"

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION


Photonic Crystals Offer New Capabilities for WDM

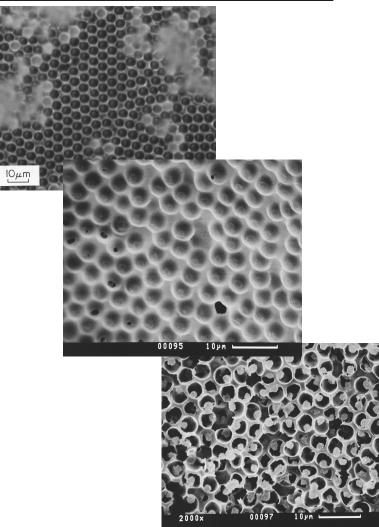
Photonic Crystal "Super-prisms"


- Periodic structures with special properties
- Much larger (10-100X) dispersion than ordinary materials
- Super-refraction (~10X) allows construction of new optical devices
- Offer promise for new WDM & related applications

Photonic Crystal Fibers

- Can confine light with or without photonic bandgap
- Single mode over much larger wavelength range
- Larger volume allows higher optical powers

After P.J. Bennett, et al (1999)


After H. Kosaka, et al, (1999) JP

After P. Russell, et al, (1999)

RSC Interests in Photonic Crystals

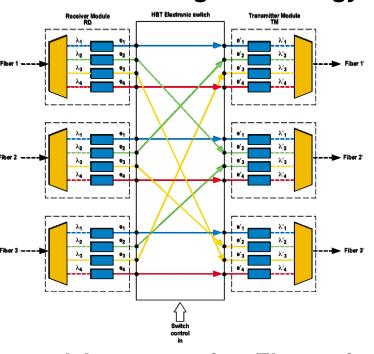
- Substantial history of RSC efforts in photonic bandgap materials and devices for microwave regime
- Recent focus on IR/Visible
- Collaborating with universities in structure design (UCLA, MIT)
- RSC material development approach is focused on self-organized materials
 - Dielectric
 - Metallized dielectrics
 - Tunable
- Applications (including WDM) drive RSC materials efforts

Rockwei

Science Center

WDM and optical Switching Technologies

Some RSC Contributions:


- OFCS 1986-1989
 - 16x16 Optical fiber crossconnect
- ONTC 1993-1995
 - All Optical WDM Network Consortium
 - Developed all optical switching and components for WDM
- NTONC 1996-Present
 - National Transparent Optical Network
 - Exploratory High bandwidth WDM network
- WEST 1995-1998
 - WDM network switching using electronics

WEST Program (120 Gb/s Optical WDM Cross Connect Switch)

WDM with Electronic Switching Technology

Cross Connect Configuration

- 3x3 fiber switch
- •4 channels/fiber
- •10 Gb/s/channel

Electronic Switch Core

• OC192/OC48 compatible

Optical MUX/DEMUX

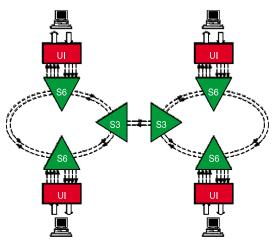
• ITU WDM channels

Key Technology

- Rockwell GaAs HBT
- Ortel DFB Laser/PIN

Advantages of an Electronic Core

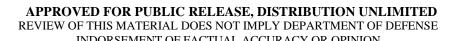
- Data regeneration/retiming
- Wavelength translation
- Low crosstalk
- OC192/OC48 compatible


- Realizable with current state-of-the-art production technology
- Potential for additional processing of input signal (smart switch)

Advantages of WEST Switching Approach & Challenges for All-optical Approaches

Advantages:

- Easier to monitor
- Inherent Fault Localization
- Fast Switching
- Quasi-Optical Layer Protection
- Enhanced Compatibility


Applications:

- WDM Network cross-connect
 •OC-48 or OC-192 systems
 •Cross-connect switch
 •Wavelength translation
- Bi-directional SONET ring
 - Add/drop (S6)Ring interconnection (S3)
- Distributed Computing
 - •40 Gb/s/fiber
 - •40 Km distance
 - Connect Caltech/JP

Rockwell

Science Ce

Supercomputers

Summary of WEST Accomplishments

- 3x3 WDM cross-connect system based on electronic switching
- ICs, optical devices, and modules for 4x10 Gb/s and 4x2.5 Gb/s lightwave transmission
 - ICs are currently in production
- 120 Gb/s 12x12 cross-connect switch IC, packaging, and module
 - Switch ICs and design innovations are now embodied in Commercially available products
- WDM link models and simulation tools
 - Simulation software now a successful product

Concluding Remarks

- Multi-disciplinary RSC technologies for WDM components and applications:
 - Optics, Photonics, Rugates, Cavity Filters, Micro-optics, Liquid Crystal Components & Devices, MOEMS
 - High Speed Microelectronics, Switch ICs, WDM Cross-connects, High speed Opto-electronics, MEMS
 - Key technology partnerships (e.g., Conexant, Boeing, Universities)
- RSC activities range from basic R&D to (selected) low volume production ---- http://www.rsc.rockwell.com
 - Interested in WDM with both fiber optic and free space comm
 - Interested in a number of other dual use applications of WDM
 - RSC efforts emphasize state-of-the-art and new approaches (e.g., WEST, "super-prism" effects)
- IR/visible Photonic Crystals offer important new capabilities for potential WDM and other applications
 Rockwell

Science Ce