Integrated Optic and Fiber Optic Devices for Communication and Sensor Networks

> Henry F. Taylor Electrical Engineering Department Texas A&M University College Station, Texas 77843 taylor@ee.tamu.edu

WDM-Related Research at Texas A&M University

- Electrooptic Tunable Filters for Fiber Optic Networks
- Slow Wave Electrooptic Modulators for Reduced Microwave Drive Power and Improved Response Linearity
- Fiber Fabry-Perot Interferometer Sensors for Measuring Pressure, Temperature, and Strain

Electrooptic Tunable Filter (EOTF)

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION

Electrooptic Tunable Filter Development Objective

Develop filter to meet requirements of dense wavelength multiplexing: Polarization independence 50 or 100 GHz channel spacing Submicrosecond tuning < 3 dB insertion loss < - 25 dB interchannel crosstalk

Electrooptic Tunable Filter Development Technical Approach

- Substrate: lithium niobate
- Waveguide structure: Mach-Zehnder interferometer; polarizing beam splitters not required
- Polarization coupling: periodic, straininducing silicon dioxide film

New 4- Port EOTF Design

TE/TM Mode Conversion

Channel Waveguides with Grating

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF FACTUAL ACCURACY OR OPINION

Mode Conversion Efficiency and Thermal Tuning

FWHM of Filter

TM to TE, FWHM=2.32nm

TE to TM, FWHM=2.28nm

Principle: Two Mode Interference (TMI)

Experimental Results of Splitter

 $ER[dB] = 10\log(\frac{P_{TE(TM)}}{P_{TM(TE)}})$

EOTF Summary

- High (>99.5%) polarization conversion was achieved in channel waveguides.
- High (> 25 dB) extinction ratio has been obtained in polarizing beam splitters.
- New EOTF design with relaxed beam splitter requirements has been proposed.
- Completion of first four-port EOTFs is planned for Dec. 2000.

Low-Voltage SBN Modulator

Summary of SBN Results

- Low-loss (0.3 dB/cm) strain-induced waveguides
- Low optical damage susceptibility (<< lithium niobate, < lithium tantalate)
- GHz modulation demonstrated
- Record low voltage-length product (0.25 Vcm)

Slow Wave Electrooptic Light Modulator

Slow Wave Electrooptic Modulator Potential Benefits

- Orders-of-magnitude reduction in electrical drive power
- Improved response linearity and SFDR

Fiber Sensors for WDM Networks

Fiber Fabry Perot Interferometer (FFPI)

FFPI Strain Sensor

Fiber Sensors for WDM Networks

FFPI Pressure Sensor

Engine Instrumented with FFPI Pressure Sensors

Demonstrated FFPI Sensor Measurands

- Pressure (static, acoustic, ultrasonic)
- Temperature
- Strain
- Magnetic field
- Acceleration
- Flow rate

FFPI Sensors for WDM Networks

- FFPI sensors can operate at high temperatures (to 1200 K), high pressures (> 10 kpsi) and high speeds (> 50 kHz)
- Readout using white light interferometry (WLI) provides absolute parameter measurement (dc performance) and multiplexing of many sensors on one fiber
- FFPI sensors are produced by Fiber Dynamics, Bryan, TX

Conclusion

Electrooptic tunable filters, slow wave modulators, and FFPI sensors are emerging technologies with considerable potential for application in military and commercial WDM networks.